Skip to main content

Glycosphingolipids in the Regulation of the Nervous System

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

The highest expression of gangliosides, sialic acid-containing glycosphingolipids (GSLs), is found in the nervous tissue of vertebrates. Changes in the profiles of gangliosides during the development of nervous tissues indicate that they are involved in the regulation of neurogenesis and synaptogenesis. Their distinct distribution patterns support the suggestion that they are involved in both the differentiation and function of neural cells. In addition to results of studies of GSLs done using biochemical, histopathological, and cell biological approaches, recent progress in the genetic engineering of glycosyltransferase genes has resulted in novel findings and concepts about their roles in the nervous system. Roles of GSLs in the regulation of signaling that determine cell fates in membrane microdomains such as lipid rafts have been extensively studied. In particular, gene targeting of glycosyltransferases in mice has enabled investigation of the in vivo functions of GSLs. The majority of abnormal phenotypes exhibited by knockout (KO) mice may reflect an abnormal structure and a resultant altered function of lipid rafts caused by alterations in their GSL composition. Generally speaking, abnormal phenotypes found in most KO mice were milder than expected, suggesting that the remaining GSLs compensate for the functions of those lost. There are also functions that cannot be replaced by the remaining GSLs. Thus, there may be two modes of function of GSLs: one is nonspecific and can be carried out by multiple GSLs, the second mode is that in which the function of the missing GSL(s) cannot be compensated by others. Identification of natural ligands for individual GSLs is crucial in order to clarify the functions of each structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GSLs:

Glycosphingolipids

KO:

Knockout

GlcCer:

Glucosylceramide

LacCer:

Lactosylceramide

GalCer:

Galactosylceramide

DKO:

Double KO

NGF:

Nerve growth factor

CNS:

Central nervous system

GPI:

Glycosylphosphatidylinositol.

References

  • Chiavegatto S, Sun J, Nelson RJ, Schnaar RL. A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol. 2000;166(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  • Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, et al. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell. 1996;86(2):209–19.

    Article  CAS  PubMed  Google Scholar 

  • De Maria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science. 1997;277(5332):1652–5.

    Article  PubMed  Google Scholar 

  • Delrieu J, Ousset PJ, Caillaud C, Vellas B. ‘Clinical trials in Alzheimer’s disease’: immunotherapy approaches. J Neurochem. 2012;120 Suppl 1:186–93.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari G, Fabris M, Gorio A. Gangliosides enhance neurite outgrowth in PC12 cells. Brain Res. 1983;284(2–3):215–21.

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto H, Tadano-Aritomi K, Tokumasu A, Ito K, Hikita T, Suzuki K, et al. Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: ceramide galactosyltransferase-deficient mice. J Biol Chem. 2000;275(30):22623–6.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, et al. GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J Biol Chem. 2000;275(8):5832–8.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Ohmi Y, Ohkawa Y, Tokuda N, Kondo Y, Tajima O. Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res. 2011;36(9):1578–86.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Tajima O, Okuda T, Tokuda N, Furukawa K. Knockout mice and glycolipids. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ, editors. Comprehensive glycoscience from chemistry to systems biology. Oxford, UK: Elsevier; 2007. p. 149–57.

    Chapter  Google Scholar 

  • Furukawa K, Takamiya K, Okada M, Inoue M, Fukumoto S. Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta. 2001;1525(1–2):1–12.

    CAS  PubMed  Google Scholar 

  • Furukawa K, Tokuda N, Okuda T, Tajima O. Glycosphingolipids in engineered mice: insights into function. Semin Cell Dev Biol. 2004;15(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, et al. Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A. 2002;99(7):4227–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A. 1996;93(22):12654.

    CAS  PubMed  Google Scholar 

  • Inoue M, Fujii Y, Furukawa K, Okada M, Okumura K, Hayakawa T, et al. Refractory skin injury in complex knock-out mice expressing only the GM3 ganglioside. J Biol Chem. 2002;277(33):29881–8.

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Fukumoto S, Iwamoto T, Mizuno A, Rokutanda A, Ishida HK, et al. Specificity of carbohydrate structures of gangliosides in the activity to regenerate the rat axotomized hypoglossal nerve. Glycobiology. 2001;11(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  • Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci U S A. 2005;102(35):12459–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai H, Allende ML, Wada R, Kono M, Sango K, Deng C, et al. Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem. 2001;276(10):6885–8.

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Sango K, Mullin KA, Proia RL. Embryonic stem cells with a disrupted GD3 synthase gene undergo neuronal differentiation in the absence of b-series gangliosides. J Biol Chem. 1998;273(31):19634–8.

    Article  CAS  PubMed  Google Scholar 

  • Kittaka D, Itoh M, Ohmi Y, Kondo Y, Fukumoto S, Urano T, et al. Impaired hypoglossal nerve regeneration in mutant mice lacking complex gangliosides: down-regulation of neurotrophic factors and receptors as possible mechanisms. Glycobiology. 2008;18(7):509–16.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Tanaka M, Yokoyama M, Sato T, Shinkai T, Furukawa K. Early lethality of beta-1,4-galactosyltransferase V-mutant mice by growth retardation. Biochem Biophys Res Commun. 2009;379(2):456–9.

    Article  CAS  PubMed  Google Scholar 

  • Levi A, Biocca S, Cattaneo A, Calissano P. The mode of action of nerve growth factor in PC12 cells. Mol Neurobiol. 1988;2(3):201–26.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KO, Furukawa K. Biosynthesis and functions of gangliosides: recent advances. Glycoconj J. 1998;15(7):627–36.

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A. 1995;92(11):5087–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K. Expression cloning of beta 1,4N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J Biol Chem. 1992;267(17):12082–9.

    CAS  PubMed  Google Scholar 

  • Nishie T, Hikimochi Y, Zama K, Fukusumi Y, Ito M, Yokoyama H, et al. Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology. 2010;20(10):1311–22.

    Article  CAS  PubMed  Google Scholar 

  • Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, et al. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem. 2004;279(32):33368–78.

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa Y, Ohmi Y, Tajima O, Yamauchi Y, Furukawa K. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling. Biochem Biophys Res Commun. 2011;411(3):483–9.

    Article  CAS  PubMed  Google Scholar 

  • Ohmi Y, Ohkawa Y, Yamauchi Y, Tajima O, Furukawa K. Essential roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues. Neurochem Res. 2012;37(6):1185–91.

    Article  CAS  PubMed  Google Scholar 

  • Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K. Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A. 2009;106(52):22405–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohmi Y, Tajima O, Ohkawa Y, Yamauchi Y, Sugiura Y, Furukawa K. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem. 2011;116(5):926–35.

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Itoh Mi M, Haraguchi M, Okajima T, Inoue M, Oishi H, et al. b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem. 2002;277(3):1633–6.

    Article  CAS  PubMed  Google Scholar 

  • Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2008;1785(2):182–206.

    CAS  PubMed  Google Scholar 

  • Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A. 1992;89(21):10016–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, et al. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev. 2011;11(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL. The role(s) of gangliosides in neural differentiation and repair: a perspective. Brain Res Bull. 1990;24(1):131–41.

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Federoff HJ. Therapeutic potential of vaccines for Alzheimer’s disease. Immunotherapy. 2011;3(2):287–98.

    Article  CAS  PubMed  Google Scholar 

  • Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, et al. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A. 1999;96(13):7532–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Lue L, Yang L, Roher A, Kuo Y, Strohmeyer R, et al. Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett. 2001;305(3):165–8.

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Meri S. Yin and Yang: complement activation and regulation in Alzheimer’s disease. Prog Neurobiol. 2003;70(6):463–72.

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11(10):688–99.

    Article  CAS  PubMed  Google Scholar 

  • Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 2004;36(11):1225–9.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura Y, Furukawa K, Tajima O, Mii S, Honda T. Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience. 2005;135(4):1167–78.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KG, Kasai RS, Fujiwara TK, Kusumi A. Single-molecule imaging of receptor-receptor interactions. Methods Cell Biol. 2013;117:373–90.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol. 2012;8(9):774–83.

    Article  CAS  PubMed  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, et al. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A. 1996;93(20):10662–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, et al. Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci U S A. 1998;95(21):12147–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuda N, Numata S, Li X, Nomura T, Takizawa M, Kondo Y, et al. β4GalT6 is involved in the synthesis of lactosylceramide with less intensity than β4GalT5. Glycobiology. 2013;23(10):1175–83.

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Stork PJ, Lazarovici P, Eiden LE. Signaling pathways for PC12 cell differentiation: making the right connections. Science. 2002;296(5573):1648–9.

    Article  CAS  PubMed  Google Scholar 

  • Wiegandt H. Gangliosides. In: Wiegandt H, editor. Glycolipids. Amsterdam: Elsevier; 1985. p. 199–260.

    Chapter  Google Scholar 

  • Wu G, Xie X, Lu ZH, Ledeen RW. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci U S A. 2001;98(1):307–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A. 2003;100(6):3445–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A. 1999;96(16):9142–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, Ellis JM, et al. Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci U S A. 2005;102(8):2725–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A. 2006;103(50):18987–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem. 1988;50(6):1825–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Furukawa, K., Ohmi, Y., Ohkawa, Y., Tajima, O., Furukawa, K. (2014). Glycosphingolipids in the Regulation of the Nervous System. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_14

Download citation

Publish with us

Policies and ethics