Skip to main content

Advertisement

Log in

Essential Roles of Gangliosides in the Formation and Maintenance of Membrane Microdomains in Brain Tissues

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gangliosides are considered to be involved in the maintenance and repair of nervous tissues. Recently, novel roles of gangliosides in the regulation of complement system were reported. Here we summarized roles of gangliosides in the formation and maintenance of membrane microdomains in brain tissues by comparing complement activation, inflammatory reaction and disruption of glycolipid-enriched microdomain (GEM)/rafts among several mutant mice of ganglioside synthases. Depending on the defects in ganglioside compositions, corresponding up-regulation of complement-related genes, proliferation of astrocytes and infiltration of microglia were found with gradual severity. Immunoblotting of fractions separated by sucrose density gradient ultracentrifugation revealed that DAF and NCAM having GPI-anchors tended to disappear from the raft fraction with intensities of DKO > GM2/GD2 synthase KO > GD3 synthase KO > WT. The lipid raft markers tended to disperse from the raft fractions with similar intensities. Phospholipids and cholesterol also tended to decrease in GEM/rafts in GM2/GD2 synthase KO and DKO, although total amounts were almost equivalent. All these results indicate that GEM/rafts architecture is destroyed by ganglioside deficiency with gradual intensity depending on the degree of defects of their compositions. Implication of inflammation caused by deficiency of gangliosides in various neurodegenerative diseases was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schengrund CL (1990) The roles of gangliosides in neural differentiation and repair: a perspective. Brain Res Bull 24:131–141

    Article  PubMed  CAS  Google Scholar 

  2. Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    Article  PubMed  CAS  Google Scholar 

  3. Furukawa K, Tajima O, Okuda T, Tokuda N, Furukawa K (2007) Knockout mice and glycolipids. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience. From chemistry to systems biology. Elsevier, Oxford, pp 149–157

    Google Scholar 

  4. Sugiura Y, Furukawa K, Tajima O, Mii S, Honda T, Furukawa K (2005) Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience 135:1167–1178

    Article  PubMed  CAS  Google Scholar 

  5. Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, Griffin JW, Schnaar RL (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537

    Article  PubMed  CAS  Google Scholar 

  6. Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides, but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667

    Article  PubMed  CAS  Google Scholar 

  7. Okada M, Itoh M, Haraguchi M et al (2000) B-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis, but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277:1633–1636

    Article  Google Scholar 

  8. Inoue M, Fujii Y, Furukawa K, Okada M, Okumura K, Hayakawa T, Furukawa K, Sugiura Y (2002) Refractory skin injury in the complex knock-out mice expressing only GM3 ganglioside. J Biol Chem 277:29881–29888

    Article  PubMed  CAS  Google Scholar 

  9. Tajima O, Egashira N, Ohmi Y et al (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82

    Article  PubMed  Google Scholar 

  10. Jennemann R, Sandhoff R, Wang S et al (2005) Cell-specific deletion of glucosyl-ceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102:12459–12464

    Article  PubMed  CAS  Google Scholar 

  11. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, Furukawa K (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci USA 106:22405–22410

    Article  PubMed  CAS  Google Scholar 

  12. McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  PubMed  CAS  Google Scholar 

  13. Terai K, Walker DG, McGeer EG, McGeer PL (1997) Neurons express proteins of the classical complement pathway in Alzheimer disease. Brain Res 769:385–390

    Article  PubMed  CAS  Google Scholar 

  14. Rogers J, Cooper NR, Webster S et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 89:10016–10020

    Article  PubMed  CAS  Google Scholar 

  15. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  16. Barnum SR (2002) Complement in central nervous system inflammation. Immunol Res 26:7–13

    Article  PubMed  CAS  Google Scholar 

  17. Tenner AJ (2001) Complement in Alzheimer’s disease: opportunities for modulating protective and pathogenic events. Neurobiol Aging 22:849–861

    Article  PubMed  CAS  Google Scholar 

  18. Yang LB, Li R, Meri S, Rogers J, Shen Y (2000) Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J Neurosci 20:7505–7509

    PubMed  CAS  Google Scholar 

  19. Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  PubMed  CAS  Google Scholar 

  20. Bénard M, Gonzalez BJ, Schouft MT, Falluel-Morel A, Vaudry D, Chan P, Vaudry H, Fontaine M (2004) Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J Biol Chem 279:43487–43496

    Article  PubMed  Google Scholar 

  21. Rahpeymai Y, Hietala MA, Wilhelmsson U et al (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J 25:1364–1374

    Article  PubMed  CAS  Google Scholar 

  22. Wyss-Coray T, Yan F, Lin AH, Lambris JD, Alexander JJ, Quigg RJ, Masliah E (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice. Proc Natl Acad Sci USA 99:10837–10842

    Article  PubMed  CAS  Google Scholar 

  23. Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol 154:927–936

    Article  PubMed  CAS  Google Scholar 

  24. Farkas I, Takahashi M, Fukuda A et al (2003) Complement C5a receptor-mediated signaling may be involved in neurodegeneration in Alzheimer’s disease. J Immunol 170:5764–5771

    PubMed  CAS  Google Scholar 

  25. Ohmi Y, Tajima O, Ohkawa Y, Sugiura Y, Furukawa K, Furukawa K (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116:926–935

    Article  PubMed  CAS  Google Scholar 

  26. Mason JC, Yarwood H, Sugars K, Morgan BP, Davies KA, Haskard DO (1999) Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition. Blood 94:1673–1682

    PubMed  CAS  Google Scholar 

  27. Tessitore A, Martin Mdel P, Sano R, Ma Y, Mann L, Ingrassia A, Laywell ED, Steindler DA, Hendershot LM, d’Azzo A (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 15:753–766

    Article  PubMed  CAS  Google Scholar 

  28. Pan B, Fromholt SE, Hess EJ, Crawford TO, Griffin JW, Sheikh KA, Schnaar RL (2005) Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol 195:208–217

    Article  PubMed  CAS  Google Scholar 

  29. Hara-Yokoyama M (2006) Gangliosides potentially inhibit extracellular nucleotide metabolism. Curr Med Chem 13:2233–2239

    Article  PubMed  CAS  Google Scholar 

  30. Ledeen RW, Wu G (2006) Sphingolipids of the nucleus and their role in nuclear signaling. Biochim Biophys Acta 1761:588–598

    PubMed  CAS  Google Scholar 

  31. Toledo MS, Suzuki E, Handa K, Hakomori S (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280:16227–16234

    Article  PubMed  CAS  Google Scholar 

  32. Lin F, Salant DJ, Meyerson H, Emancipator S, Morgan BP, Medof ME (2004) Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis. J Immunol 172:2636–2642

    PubMed  CAS  Google Scholar 

  33. Yamada K, Miwa T, Liu J, Nangaku M, Song WC (2004) Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol 172:3869–3875

    PubMed  CAS  Google Scholar 

  34. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Furukawa.

Additional information

Special issue: In Honour of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmi, Y., Ohkawa, Y., Yamauchi, Y. et al. Essential Roles of Gangliosides in the Formation and Maintenance of Membrane Microdomains in Brain Tissues. Neurochem Res 37, 1185–1191 (2012). https://doi.org/10.1007/s11064-012-0764-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0764-7

Keywords

Navigation