Skip to main content

Glycosignaling: A General Review

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

The concept of glycosignaling, in which neural cell-surface glycoconjugates form microdomains (Lipid Rafts) to facilitate the recruitment of signaling molecule components to form a transient signaling unit, is helping us understand the reason for glycoheterogeneity in the brain and is leadings to important translational efforts in medicine. In this review we first describe the origins of the concept of glycomicrodomains, how lipid heterogeneity might have relevance for the brain development, pathology and how the glycocalyx acts as a barrier in glia. After a discussion of how such microdomains are isolated and studied using modern technology such as nanoparticle labeling and molecular microscopy, we will present examples of how glycosignaling can function in such brain-specific situations as axonal growth and protein phosphorylation-mediated signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S. Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res. 2012;37:1344–54.

    Article  CAS  PubMed  Google Scholar 

  • Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB, Bradbury EJ. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 2006;26:10856–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boeneman K, Delehanty JB, Blanco-Canosa JB, Susumu K, Stewart MH, Oh E, Huston AL, Dawson G, Ingate S, Walters R, Domowicz M, Deschamps JR, Algar WR, DiMaggio S, Manono J, Spillmann CM, Thompson D, Jennings TL, Dawson PE, Mendintz I. Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle. ACS Nano. 2013;7:3778–96.

    Article  CAS  PubMed  Google Scholar 

  • Colsch B, Jackson SN, Dutta S, Woods AS. Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem Neurosci. 2011;2:213–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson G, Fuller M, Helmsey KM, Hopwood JJ. Abnormal gangliosides are localized in lipid rafts in Sanfilippo (MPS3a) mouse brain. Neurochem Res. 2012;37:1372–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Futerman AH, van Meer G. The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol. 2004;5:554–65.

    Article  CAS  PubMed  Google Scholar 

  • Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta. 2008;1780:325–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A. New insights in glycosphingolipid function: “glycosignaling domain” a cell surface assembly of glycosphingolipids with signal transducer molecules, involved in cell adhesion coupled with signaling. Glycobiology. 1998;8:11–9.

    Google Scholar 

  • Jia SJ, Jin S, Zhang F, Yi F, Dewey WL, Li PL. Formation and function of ceramide-enriched membrane platforms with CD38 during M1-receptor stimulation in bovine coronary arterial myocytes. Am J Physiol. 2008;295:1743–52.

    Google Scholar 

  • Kaneko J, Kinoshita MO, Machida T, Shinoda Y, Nagatsuka Y, Hirabayashi Y. Phosphatidylglucoside: a novel marker for adult neural stem cells. J Neurochem. 2011;116:840–4.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri Y, Mori T, Nakamjima H, Katagiri C, Taguchi T, Takeda T, Kiyokawa N, Fujimoto J. Activation of Src family kinase induced by Shiga toxin binding to globotriasosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem. 1999;274:35278–82.

    Article  CAS  PubMed  Google Scholar 

  • Lingwood CA. A holistic approach to glycolipid function: is the lipid moiety important? Trends Glycosci Glycotechnol. 1999;11:1–9.

    Article  Google Scholar 

  • Lingwood D, Reis J, Schwille P, Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A. 2008;105:10005–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lingwood CA, Manis A, Mahfoud R, Khan F, Binnijngton B, Mylvaganam M. New aspects of the regulation of glycosphingolipid receptor function. Chem Phys Lipids. 2010;163:27–35.

    Article  CAS  PubMed  Google Scholar 

  • Mountney A, Zahner MR, Lorenzini I, Oudega M, Schramm LP, Schnaar RL. Sialidase enhances recovery from spinal cord contusion injury. Proc Natl Acad Sci U S A. 2010;107:11561–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mountney A, Zahner MR, Sturgill ER, Riley CJ, Aston JW, Oudega M, Schramm LP, Hurtado A, Schnaar R. Sialidase, chondroitinase ABC and combination therapy after spinal cord contusion injury. J Neurotrauma. 2013;30(3):181–90.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakamura H, Moriyama Y, Makiyama T, Emori S, Yamashita H, Yamazaki R, Murayama T. Lactosylceramide interacts with and activates cytosolic phospholipase A2α. J Biol Chem. 2013;288(32):23264–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama H, Ogawa H, Takamori K, Iwabuchi K. GSL-enriched membrane microdomains in innate immune responses. Arch Immunol Ther Exp (Warsz). 2013;61:217–28.

    Article  CAS  Google Scholar 

  • Parker RB, Kohler J. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol. 2009;5:35–46.

    Article  Google Scholar 

  • Qin J, Berdyshev E, Poirer C, Schwartz NB, Dawson G. Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of Hyaluronan synthase 2 through decreased ceramide production and activation of Akt. J Biol Chem. 2012;287:13620–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. In: Chemistry and metabolism of sphingolipids. Amsterdam: North Holland Publishing Co.; 1970. p. 270–97.

    Google Scholar 

  • Saha N, Kolev MV, Semavina M, Himanen J, Nikolov DB. Ganglioside mediate the interaction between Nogo receptor 1 and LINGO-1. Biochem Biophys Res Commun. 2011;413:92–7.

    Article  CAS  PubMed  Google Scholar 

  • Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem. 2012;124:514–22.

    Article  Google Scholar 

  • Sonnino S, Prioni S, Chigorno V, Prinetti A. Interactions between caveolin-1 and sphingolipids, and their functional relevance. Biochemical roles of eukaryotic cell surface macromolecules. Adv Exp Med Biol. 2012;749:97–115.

    Article  CAS  PubMed  Google Scholar 

  • Sonnino S, Mauri L, Ciampa MG, Prinetti A. Gangliosides as regulators of cell signaling: ganglioside-protein interactions or ganglioside-driven membrane organization? J Neurochem. 2013;124:432–5.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji S, Yamashita T, Matsuda Y, Nagai Y. A novel glycosignaling system: GQ1b-dependent neuritogenesis of human neuroblastoma cell line, GOTO, is closely associated with GQ1b-dependent ecto-type protein phosphorylation. Neurochem Int. 1992;21:549–54.

    Article  CAS  PubMed  Google Scholar 

  • Walters R, Kraig RP, Medintz I, Delehanty JB, Stewart MH, Susumu K, Huston AL, Dawson PE, Dawson G. Nanoparticle targeting to neurons in a rat hippocampal slice culture model. ASN Neuro. 2012;4:383–92.

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Yanagisawa M. Glycosignaling in neural stem cells. J Neurochem. 2007;103:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu Y, Park H, Boggs JM, Basu A. Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-Sulfogalactose carbohydrate–carbohydrate interaction using model systems and cellular binding studies. Bioconjug Chem. 2012;23:1166–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glyn Dawson .

Editor information

Editors and Affiliations

Additional information

Conflict of Interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, G. (2014). Glycosignaling: A General Review. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_13

Download citation

Publish with us

Policies and ethics