Skip to main content
Log in

Abnormal Gangliosides are Localized in Lipid Rafts in Sanfilippo (MPS3a) Mouse Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Allogenic stem cell transplantation can reduce lysosomal storage of heparan sulfate-derived oligosaccharides by up to 27 % in Sanfilippo MPS3a brain, but does not reduce the abnormal storage of sialolactosylceramide (GM3) or improve neurological symptoms, suggesting that ganglioside storage is in a non-lysosomal compartment. To investigate this further we isolated the Triton X100-insoluble at 4 °C, lipid raft (LR) fraction from a sucrose-density gradient from cerebral hemispheres of a 7 month old mouse model of Sanfilippo MPS3a and age-matched control mouse brain. HPLC/MS/MS analysis revealed the expected enrichment of normal complex gangliosides, ceramides, galatosylceramides and sphingomyelin enrichment in this LR fraction. The abnormal HS-derived oligosaccharide storage material was in the Triton X100-soluble at 4 °C fractions (8–12),whereas both GM3 and sialo[GalNAc]lactosylceramide (GM2) were found exclusively in the LR fraction (fractions 3 and 4) and were >90 % C18:0 fatty acid, suggesting a neuronal origin. Further analysis also revealed a >threefold increase in the late-endosome marker bis (monoacylglycerol) phosphate (>70 % as C22:6/22:6-BMP) in non-LR fractions 8–12 whereas different forms of the proposed BMP precursor, phosphatidylglycerol (PG) were in both LR and non-LR fractions and were less elevated in MPS3a brain. Thus heparan sulfate-derived oligosaccharide storage is associated with abnormal lipid accumulation in both lysosomal (BMP) and non-lysosomal (GM3 and GM2) compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG, Natarajan V (2009) FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284:5467–5477

    Article  PubMed  CAS  Google Scholar 

  2. Han X, Gross RW (2005) Shotgun lipidomics: multi-dimensional mass spectrometric analysis of cellular lipidomes. Expert Rev Proteomics 2:253–264

    Article  PubMed  CAS  Google Scholar 

  3. Qin J, Berdyshev E, Goya J, Natarajan V, Dawson G (2010) Neurons and oligodendrocytes recycle sphingosine-1-phosphate to ceramide; significance for apoptosis and multiple sclerosis. J Biol Chem 285:14134–14143

    Article  PubMed  CAS  Google Scholar 

  4. Hein LK, Duplock S, Hopwood JJ, Fuller M (2008) Lipid composition of microdomains is altered in a cell model of Gaucher disease. J Lipid Res 49:1725–1734

    Article  PubMed  CAS  Google Scholar 

  5. Kilkus J, Goswami R, Dawson SA, Testai FD, Berdyshev E, Han X, Dawson G (2008) Differential regulation of sphingomyelin synthesis and catabolism in oligodendrocytes and neurons. J Neurochem 106:1745–1757. PMCID: PMC2720050

    Google Scholar 

  6. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284:16090–16098

    Article  PubMed  CAS  Google Scholar 

  7. Saadat L, Dupree JL, Kilkus J, Han X, Traka M, Proia RL, Dawson G, Popko B (2009) Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58:391–398

    Article  Google Scholar 

  8. Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  PubMed  CAS  Google Scholar 

  9. Rosenbaum AI, Zhang G, Warren JD, Maxfield FR (2010) Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc Natl Acad Sci USA 107:5477–5482

    Article  PubMed  CAS  Google Scholar 

  10. Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT, Walkley SU (2009) Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4:e6951

    Article  PubMed  Google Scholar 

  11. Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J (1999) Nat Cell Biol 1:113–118

    Article  PubMed  CAS  Google Scholar 

  12. Kilkus J, Goswami R, Testai FD, Dawson G (2003) Ceramide in rafts (detergent-insoluble fraction) mediates cell death in neurotumor cell lines. J Neurosci Res 72:62–75

    Article  Google Scholar 

  13. McGlynn R, Dobrenis K, Walkley SU (2004) Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 480:415–426

    Article  PubMed  CAS  Google Scholar 

  14. Crawley AC, Gliddon BL, Auclair D, Brodie SL, Hirte C, King BM, Fuller M, Hemsley KM, Hopwood JJ (2006) Characterization of a C57BL/6 congenic mouse strain of mucopolysaccharidosis type IIIA. Brain Res 1104:1–17

    Article  PubMed  CAS  Google Scholar 

  15. Lau AA, Hannouche H, Rozaklis T, Hassiotis S, Hopwood JJ, Hemsley KM (2010) Allogeneic stem cell transplantation does not improve neurological deficits in mucopolysaccharidosis type IIIA mice. Exp Neurol 225:445–454

    Article  PubMed  CAS  Google Scholar 

  16. Lau AA, Rozaklis T, Ibanes S, Luck AJ, Beard H, Hassiotis S, Mazouni K, Hopwood JJ, Kremer EJ, Hemsley KM (2012) Helper-dependent canine adenovirus vector-mediated transgene expression in a neurodegenerative lysosomal storage disorder. Gene 491:53–57

    Article  PubMed  CAS  Google Scholar 

  17. Simons K, Gruenberg J (2000) Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 10:459–462

    Article  PubMed  CAS  Google Scholar 

  18. Yu H, Wakim B, Li M, Halligan B, Tint GS, Patel SB (2007) Quantifying raft proteins in neonatal mouse brain by ‘tube-gel’ protein digestion label-free shotgun proteomics. Proteome Sci 5:17

    Article  PubMed  Google Scholar 

  19. Foster LJ, DeHoog CL, Mann M (2003) Unbiased quantitative proteomics of lipid Rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100:5813–5818

    Article  PubMed  CAS  Google Scholar 

  20. Maccarrone M, Centonze D (2009) Lipid rafts regulate 2-arachidonylglycerol metabolism and physiological activity in the striatum. J Neurochem 109:371–381

    Article  PubMed  CAS  Google Scholar 

  21. Mitchell JS, Brown WS, Woodside DG, Vanderslice P, McIntyre BW (2009) Clustering T-cell GM1 lipid rafts increases cellular resistance to shear on fibronectin through changes in integrin affinity and cytoskeletal dynamics. Immunol Cell Biol 87:324–336

    Article  PubMed  CAS  Google Scholar 

  22. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharm 143:235–245

    Article  CAS  Google Scholar 

  23. Donati RJ, Rasenick MM (2005) Chronic antidepressant treatment prevents accumulation of Gsα in cholesterol-rich, plasma membrane domains (Lipid Rafts). Neuropsychopharm 30:1238–1245

    CAS  Google Scholar 

  24. Meikle PJ, Duplock S, Blacklock D, Whitfield PD, Macintosh G, Hopwood JJ, Fuller M (2008) Effect of lysosomal storage on bis(monoacylglycero)phosphate. Biochem J 411:71–78

    Article  PubMed  CAS  Google Scholar 

  25. Ledeen R, Salsman K, Gonatas J, Taghavy A (1965) Structure comparison of the major monosialogangliosides from brains of normal human, gargoylism, and late infantile systemic lipidosis. J Neuropathol Exp Neurol 24:341–345

    Article  PubMed  CAS  Google Scholar 

  26. Crawly AC et al (2011) Enzyme replacement reduces neuropathology in MPSIIIA dogs. Neurobiol Dis 43:422–434

    Article  Google Scholar 

  27. Huterer S, Wherrett JR (1986) Incorporation of polyunsaturated fatty acids into bis(monoacylglycero)phosphate and other lipids of macrophages and of fibroblasts from control and Niemann-Pick patients. Biochim Biophys Acta 876:318–326

    PubMed  CAS  Google Scholar 

  28. Heravi J, Waite M (1999) Transacylase formation of bis(monoacylglycerol)phosphate. Biochim Biophys Acta 1473:277–286

    Google Scholar 

  29. Tani M, Hannun YA (2007) Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J Biol Chem 282:10047–10056

    Article  PubMed  CAS  Google Scholar 

  30. Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR 3rd, Davis NG, El-Husseini A (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456:904–909

    Article  PubMed  CAS  Google Scholar 

  31. Cole AA, Dosemeci A, Reese TS (2010) Co-segregation of AMPA receptors with GM1 ganglioside in synaptosomal membrane subfractions. Biochem J 427:535–540

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi T, Startchev K, Whitney AJ, Gruenberg J (2001) A lipid regulates endosome structure and function. J Biol Chem 382:483–485

    Article  CAS  Google Scholar 

  33. Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–534

    Google Scholar 

  34. Tam C, Idone V, Schuchman E, Tabas I, Andrews NA (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189:1027–1038

    Article  PubMed  CAS  Google Scholar 

  35. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, Furukawa K (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci USA 106:22405–22410

    Article  PubMed  CAS  Google Scholar 

  36. Gulbins E, Kolesnick R (2002) Acid sphingomyelinase-derived ceramide signaling in apoptosis. Sub-Cellular Biochem 36:229–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by USPHS Grant NS36866 to GD, the Children’s Brain Diseases Foundation for sabbatical support to GD and an NHMRC of Australia (grant no. 399355 to JJH, EJK and KMH). We would like to acknowledge the excellent technical assistance of Sylvia Dawson and S. Duplock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dawson.

Additional information

Special Issue: In Honor of Bob Leeden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, G., Fuller, M., Helmsley, K.M. et al. Abnormal Gangliosides are Localized in Lipid Rafts in Sanfilippo (MPS3a) Mouse Brain. Neurochem Res 37, 1372–1380 (2012). https://doi.org/10.1007/s11064-012-0761-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0761-x

Keywords

Navigation