Skip to main content

Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates

  • Chapter
  • First Online:
Glycobiology of the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 9))

Abstract

This chapter provides an overview of structures and functions of complex carbohydrates (commonly called glycans) that are covalently linked to proteins or lipids to form glycoconjugates known as glycoproteins, glycolipids, and proteoglycans. To understand the complexity of the glycan structures, the nature of their monosaccharide building blocks, how the monomeric units are covalently linked to each other, and how the resulting glycans are attached to proteins or lipids are discussed. Then, the classification, nomenclature, structural features, and functions of the glycan moieties of animal glycoconjugates are briefly described. All three classes of glycoconjugates are constituents of plasma membranes of all animal cells, including those of the nervous system. Glycoproteins and, particularly, proteoglycans are also found abundantly as constituents of tissue matrices. Additionally, glycan-rich mucin glycoproteins are the major constituents of mucus secretions of epithelia of various organs. Furthermore, the chapter draws attention to the incredible structural complexity and diversity of the glycan moieties of cell surface and extracellular glycoconjugates. Finally, the involvement of the glycans as informational molecules in a wide range of essential functions in almost all known biological processes, which are crucial for development, differentiation, and normal functioning of animals, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achur RN, Valiyaveettil M, Alkhalil A, Ockenhouse CF, Gowda DC. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans in the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J Biol Chem. 2000;275(51):40344–56.

    Article  CAS  PubMed  Google Scholar 

  • Achur RN, Muthusamy A, Madhunapantula SV, Bhavanandan V, Seudieu C, Gowda DC. Chondroitin sulfate proteoglycans of bovine cornea: Structural characterization and assessment for the adherence of Plasmodium falciparum-infected erythrocytes. Biochim Biophys Acta. 2004;1701(1–2):109–19.

    Article  CAS  PubMed  Google Scholar 

  • Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. 1st ed. New York: Marcel-Dekker; 1992.

    Google Scholar 

  • Ariga T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(7):386–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ariga T, Kohriyama T, Freddo L, Latov N, Saito M, Kon K, Ando S, et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem. 1987;262:848–53.

    CAS  PubMed  Google Scholar 

  • Bardor M, Nguyen DH, Diaz S, Varki A. Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem. 2002;280(6):4228–37.

    Article  Google Scholar 

  • Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–77.

    Article  CAS  PubMed  Google Scholar 

  • Bertozzi CR, Rabuka D. Structural basis of glycan diversity. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 23–36.

    Google Scholar 

  • Bhavanandan VP, Davidson EA. Proteoglycans: structure, synthesis, function. In: Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. New York: Marcel-Dekker; 1992. p. 167–202.

    Google Scholar 

  • Bhavanandan VP, Furukawa K. Biochemistry and oncology of sialoglycoproteins. In: Rosenberg A, editor. Biology of the sialic acids. New York: Plenum Press; 1995. p. 145–96.

    Chapter  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD. Heparan sulfate proteoglycans fine-tune mammalian physiology. Nature. 2007;446(7139):1030–7.

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I, Schachter H, Stanley P. O-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 115–27.

    Google Scholar 

  • Brooks SA, Dwek MV, Schumacher U. Functional and Molecular Glycobiology. 1st ed. Oxford: BIOS Scientific; 2002.

    Google Scholar 

  • Bruses JL, Rutishauser U. Polysialic acid in neural cell development: roles, regulation and mechanism. In: Fukuda M, Hindsgaul O, editors. Molecular and Cellular Glycobiology. Oxford: Oxford University Press; 2000. p. 116–32.

    Google Scholar 

  • Buddecke E. Proteoglycans. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 199–216.

    Google Scholar 

  • Chai W, Yuen CT, Kogelberg H, Carruthers RA, Margolis RU, Feizi T, Lawson AM. High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur J Biochem.1999; 263(3):879–88.

    Article  CAS  PubMed  Google Scholar 

  • Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein-glycan interactions. Curr Opin Chem Biol. 2005;8(6):617–25.

    Article  Google Scholar 

  • Cummings RD. Synthesis of asparagine-linked oligosaccharides: pathways, genetics, and metabolic regulation. In: Allen HJ, Kisailus EC, editors. Glycoconjugates. New York: Marcel-Dekker; 1992. p. 333–60.

    Google Scholar 

  • Esko JD, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 229–48.

    Google Scholar 

  • Ferguson MAJ, Kinoshita T, Hart GW. Glycosylphosphatidylinositol anchors. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 143–61.

    Google Scholar 

  • Freeze H, Haltiwanger RS. Other classes of ER/Golgi-derived glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 163–73.

    Google Scholar 

  • Fukuda M. Cell surface carbohydrates: cell type-specific expression. In: Fukuda M, Hindsgaul O, editors. Molecular and Cellular Glycobiology. Oxford: Oxford University Press; 2000. p. 1–61.

    Google Scholar 

  • Fukuda MN, Hakomori S. Structures of branched blood group A-active glycosphingolipids in human erythrocytes and polymorphism of A- and H-glycolipids in A1 and A2 subgroups. J Biol Chem. 1982;257(1):446–55.

    CAS  PubMed  Google Scholar 

  • Fukuda MN, Bothner B, Scartezzini P, Dell A. Isolation and characterization of poly-N-acetyllactosaminylceramides accumulated in the erythrocytes of congenital dyserythropoietic anemia type II patients. Chem Phys Lipids. 1986;42(1–3):185–97.

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL. Keratan sulfate: structure, biosynthesis, and function. Glycobiology. 2000;10(10):951–8.

    Article  CAS  PubMed  Google Scholar 

  • Funderburgh JL, Caterson B, Conrad GW. Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem. 1987;262(24):11634–40.

    CAS  PubMed  Google Scholar 

  • Gabius H-J, editor. The sugar code: fundamentals of glycosciences. 1st ed. Weinheim: Wiley-VCH; 2009.

    Google Scholar 

  • Gascon E, Vutskits L, Kiss JZ. Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev. 2007;56(1):101–18.

    Article  CAS  PubMed  Google Scholar 

  • Gebauer JM, Müller S, Hanisch FG, Paulsson M, Wagener R. O-Glucosylation and O-fucosylation occur together in close proximity on the first epidermal growth factor repeat of AMACO (VWA2 protein). J Biol Chem. 2008;283(26):17846–54.

    Article  CAS  PubMed  Google Scholar 

  • Hakomori S. Structure, organization, and functions of glycosphingolipids in membrane. Curr Opin Hematol. 2003;10(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  • Hascall V, Esko JD. Hyaluronan. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 219–27.

    Google Scholar 

  • Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Ann Rev Physiol. 2008;70:431–57.

    Article  CAS  Google Scholar 

  • Hennet T. Diseases of glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 365–83.

    Google Scholar 

  • Hildebrandt H, Dityatev A. Polysialic acid in brain development and synaptic plasticity. Top Curr Chem. (2013) 10.1007/128_2013_446, Springer-Verlag Berlin Heidelberg 2013.

    Google Scholar 

  • Homeister J, Lowe JB. Carbohydrate recognition in leukocyte-endothelial cell interactions. In: Hindsgaul O, Fukuda M, editors. Molecular and cellular glycobiology. Oxford: Oxford University Press; 2000. p. 62–115.

    Google Scholar 

  • Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kizuka Y, Oka S. Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci. 2012;69(24):4135–47.

    Article  CAS  PubMed  Google Scholar 

  • Kleene R, Schachner M. Glycans and neural cell interactions. Nat Rev Neurosci. 2004;5(3):195–208.

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J. Glycolipids. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 177–98.

    Google Scholar 

  • Krusius T, Finne J, Margolis RK, Margolis RU. Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of brain. J Biol Chem. 1986;261(18):8237–42.

    CAS  PubMed  Google Scholar 

  • Kundu SK. Glycolipids: structure, synthesis, functions. In: Allen HJ, Kisailus EC, editors. Glycoconjugates: composition, structure, and function. New York: Marcel-Dekker; 1992. p. 203–62.

    Google Scholar 

  • Leeden RW, Wu G. Neurobiology meets glycosciences. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 495–516.

    Google Scholar 

  • Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem. 2012;84(7):3040–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, An HJ, Hedrick JL, Lebrilla CB. Collision-induced dissociation tandem mass spectrometry for structural elucidation of glycans. Methods Mol Biol. 2009;534:133–45.

    CAS  PubMed  Google Scholar 

  • Luther KB, Haltiwanger RS. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol. 2009;41(5):1011–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malavaki C, Mizumoto S, Karamanos N, Sugahara K. Recent advances in the structural study of functional chondroitin and dermatan sulfate in health and disease. Connect Tissue Res. 2008;49(3):133–9.

    Article  CAS  PubMed  Google Scholar 

  • Miljkovic M. Carbohydrates: synthesis, mechanisms, and stereoelectronic effects. 1st ed. New York: Springer; 2010.

    Google Scholar 

  • Morita I, Kizuka Y, Kakuda S, Oka S. Expression and function of the HNK-1 carbohydrate. J Biochem. 2008;143(6):719–24.

    Article  CAS  PubMed  Google Scholar 

  • Müthing J. Influenza A, and Sendai viruses preferentially bind to fucosylated gangliosides with linear poly-N-acetyllactosaminyl chains from human granulocytes. Carbohydr Res. 1996;290(2):217–24.

    Article  PubMed  Google Scholar 

  • Nagai Y, Iwamori M. Cellular biology of gangliosides. In: Rosenberg A, editor. Biology of the sialic acids. New York: Plenum Press; 1995. p. 197–241.

    Chapter  Google Scholar 

  • Nakamura N, Lyalin D, Panin VM. Protein O-mannosylation in animal development and physiology: from human disorders to Drosophila phenotypes. Semin Cell Dev Biol. 2010;21(6):622–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nandini CD, Sugahara K. Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv Pharmacol. 2006;53:253–79.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S. Toward automated glycan analysis. Adv Carbohydr Chem Biochem. 2011;65:219–71.

    Article  CAS  PubMed  Google Scholar 

  • North SJ, Hitchen PG, Haslam SM, Dell A. Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol. 2009;19(5):498–506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orlando R. Quantitative analysis of glycoprotein glycans. Methods Mol Biol. 2013;951:197–215.

    Article  CAS  PubMed  Google Scholar 

  • Patsos G, Corfield A. O-Glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 111–37.

    Google Scholar 

  • Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochem. 2008;47(27):6991–7000.

    Article  CAS  Google Scholar 

  • Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562–74.

    Article  CAS  PubMed  Google Scholar 

  • Sasisekharan R, Raman R, Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Ann Rev Biomed Eng. 2008;8:181–231.

    Article  Google Scholar 

  • Schachter H, Brockhausen I. The biosynthesis of serine(threonine)-N-acetylgalactosamine-linked carbohydrate moieties. In: Allen HJ, Kisailus EC, editors. Glycoconjugates. New York: Marcel-Dekker; 1992. p. 263–332.

    Google Scholar 

  • Schauer R. Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena). 2004;107(1):49–64.

    Article  CAS  Google Scholar 

  • Schauer R. Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol. 2009;19(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  • Schiel JE. Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity. Anal Bioanal Chem. 2012;404(4):1141–9.

    Article  CAS  PubMed  Google Scholar 

  • Schnaar R, Suzuki A, Stanley P. Glycospingolipids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 129–41.

    Google Scholar 

  • Schwarting GA, Jungalwala FB, Chou DK, Boyer AM, Yamamoto M. Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev Biol. 1987;120:65–76.

    Article  CAS  PubMed  Google Scholar 

  • Shams-Eldin H, Debierre-Grockiego F, Schwarz RT. Glycosylphosphatidylinositol anchors: structure, biosynthesis and functions. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 155–73.

    Google Scholar 

  • Springer SA, Gagneux P. Glycan evolution in response to collaboration, conflict, and constraint. J Biol Chem. 2013;288(10):6904–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley P, Cummings RD. Structures common to different glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 175–98.

    Google Scholar 

  • Stanley P, Schachter H, Taniguchi N. N-Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 101–14.

    Google Scholar 

  • Svennerholm L. Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog Brain Res. 1994;101:XI–XIV.

    Article  CAS  PubMed  Google Scholar 

  • Taylor ME, Drickamer K. Introduction to Glycobiology. 3rd ed. Oxford: Oxford University Press; 2011.

    Google Scholar 

  • Tivnan A, Shannon W, Gubala V, Nooney R, Williams DE, McDonagh C, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One. 2012;7(5):e38129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuda A, Ariga T, Isogai Y, Komba S, Kiso M, Hasegawa A, et al. On the specificity of anti-sulfoglucuronosyl glycolipid antibodies. J Carbohydrate Chem. 1998;17:535–46.

    Article  CAS  Google Scholar 

  • Varki A. Diversity of the sialic acids. Glycobiology. 1992;2(1):25–40.

    Article  CAS  PubMed  Google Scholar 

  • Varki A, Freeze HH. Glycans in acquired human diseases. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 601–15.

    Google Scholar 

  • Varki A, Lowe JB. Biological roles of glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 75–88.

    Google Scholar 

  • Varki A, Schauer R. Sialic acids. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. New York: Cold Spring Harbor Laboratory Press; 2008. p. 199–217.

    Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME, editors. Essentials of glycobiology. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 2008.

    Google Scholar 

  • Voet D, Voet JG. Biochemistry. 4th ed. New York: John Wiley & Sons; 2010.

    Google Scholar 

  • Volpi N. Chondroitin sulfate; structure, role and pharmacological activity. Ad Pharmacol. 2006;53:1–58.

    Google Scholar 

  • Wang B, Miller JB, McNeil Y, McVeagh P. Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp Biochem Physiol A Mol Integr Physiol. 1998;119(1):435–9.

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Ledeen RW. Configuration of the ketosidic bond of sialic acid. J Biol Chem. 1969;24:1306–13.

    Google Scholar 

  • Yuriev E, Ramsland PA, editors. Structural glycobiology. 1st ed. Boca Raton: CRC Press; 2012.

    Google Scholar 

  • Zaia J. Mass spectrometry and glycomics. OMICS. 2010;14(4):401–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Uchimura K, Kadomatsu K. Brain keratan sulfate and glial scar formation. Ann NY Acad Sci. 2006;1086:81–90.

    Article  CAS  PubMed  Google Scholar 

  • Zuber C, Roth J. N-Glycosylation. In: Gabius H-J, editor. The sugar code: fundamentals of glycosciences. Weinheim: Wiley-VCH; 2009. p. 87–110.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Rajeshwara Achur for the preparation of Figs. 1.1–1.9 and Ms. Jillian Dunbar, Devon Medical Art, Hershey, for the artwork in Fig. 1.10. DCG is partly supported by the grant AI41139 from National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.

Conflicts of Interest The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veer P. Bhavanandan or D. Channe Gowda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhavanandan, V.P., Gowda, D.C. (2014). Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates. In: Yu, R., Schengrund, CL. (eds) Glycobiology of the Nervous System. Advances in Neurobiology, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1154-7_1

Download citation

Publish with us

Policies and ethics