Skip to main content

Natural Course (Stages/Evidence-Based Discussion)

  • Chapter
  • First Online:
Diabetes and Kidney Disease

Abstract

Studies during the 1960s to 1980s have led to characterization of the natural course of diabetic kidney disease (DKD), which occurs in series of five stages. DKD has historically been named diabetic nephropathy if there is macroalbuminuria or proteinuria. This chapter describes the five stages of DKD in Type 1 DM (T1DM) and Type 2 DM (T2DM) as well as their similarities and differences. Stage 1, the so-called hyperfiltration-hypertrophy phase, is detected at the diagnosis of DM. In stage 1 there is renal hypertrophy and elevated glomerular filtration rate (GFR). Stage 2 is named as the silent or normoalbuminuria stage as it is not detected clinically as urinary albumin excretion (UAE) remains within normal range and the GFR can be normal or elevated. However, there are significant structural changes such as thickening of the basement membrane and expansion of the mesangium. The third stage is termed microalbuminuria or incipient diabetic nephropathy and it is detected clinically as UAE is increased to microalbuminuria range (20–200 μg/min, 30–300 mg/24 h, or albumin-to-creatinine ratio (ACR) of 30–300 mg/g). GFR is usually preserved but can start declining in this stage. Untreated hypertension in this stage may worsen DKD. Stage 4 is called macroalbuminuria or overt diabetic nephropathy and has UAE in macroalbuminuria range (300 mg/24 h, >200 μg/min, or ACR > 300 mg/g) or proteinuria. Although GFR can be within normal range early in this phase, it continues to decline as the stage progresses. Progression of kidney structural changes can be detected. Lastly, stage 5 is called end stage renal disease or uremia. It is due to advanced diabetic nephropathy and requires initiation of renal replacement therapy for survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownlee M, Aiello LP, Cooper ME, Vinik AI, Nesto RW, Boulton AJM. Complications of diabetes mellitus. In: Melmed S, Polonsky K, Larsen PR, Kronenberg KM, editors. Williams textbook of endocrinology. 12th ed. Philadelphia: Saunders (Elsevier); 2011. p. 1462–551.

    Chapter  Google Scholar 

  2. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  3. Masharani U, German M. Pancreatic hormones and diabetes mellitus. In: Gardner DG, Shoback D, editors. Greenspan’s basic & clinical endocrinology. 9th ed. New York: The McGraw-Hill Companies; 2011. p. 573.

    Google Scholar 

  4. CDC National Center for Health Statistics-Homepage. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. 2013. http://www.cdc.gov/nchs/nhanes.htm. Accessed 26 Apr 2013.

  5. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. U S Renal Data System, USRDS 2012 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. 2012. http://www.usrds.org/atlas.aspx. Accessed 26 Apr 2013.

  6. Ismail N, Becker B, Strzelczyk P, Ritz E. Renal disease and hypertension in non-insulin-dependent diabetes mellitus. Kidney Int. 1999;55(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  7. Finne P, Reunanen A, Stenman S, Groop PH, Gronhagen-Riska C. Incidence of end-stage renal disease in patients with type 1 diabetes. JAMA. 2005;294(14):1782–7.

    Article  CAS  PubMed  Google Scholar 

  8. de Boer IH, Rue TC, Cleary PA, Lachin JM, Molitch ME, Steffes MW, et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort. Arch Intern Med. 2011;171(5):412–20.

    Article  PubMed Central  PubMed  Google Scholar 

  9. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007;49(2 Suppl 2):S12–154.

    Google Scholar 

  10. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32 Suppl 2:64–78.

    Article  PubMed  Google Scholar 

  11. Ditzel J, Junker K. Abnormal glomerular filtration rate, renal plasma flow, and renal protein excretion in recent and short-term diabetics. Br Med J. 1972;2(5804):13–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Osterby R. Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl. 1974;574:3–82.

    CAS  PubMed  Google Scholar 

  13. Osterby R, Gundersen HJ, Horlyck A, Kroustrup JP, Nyberg G, Westberg G. Diabetic glomerulopathy. Structural characteristics of the early and advanced stages. Diabetes. 1983;32 Suppl 2:79–82.

    Article  PubMed  Google Scholar 

  14. Seyer-Hansen K. Renal hypertrophy in streptozotocin-diabetic rats. Clin Sci Mol Med Suppl. 1976;51(6):551–5.

    CAS  Google Scholar 

  15. Christiansen JS, Gammelgaard J, Frandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia. 1981;20(4):451–6.

    Article  CAS  PubMed  Google Scholar 

  16. Mogensen CE, Schmitz A, Christensen CK. Comparative renal pathophysiology relevant to IDDM and NIDDM patients. Diabetes Metab Rev. 1988;4(5):453–83.

    Article  CAS  PubMed  Google Scholar 

  17. Mogensen CE. Kidney function and glomerular permeability to macromolecules in juvenile diabetes with special reference to early changes. Dan Med Bull. 1972;19 Suppl 3:1–40.

    PubMed  Google Scholar 

  18. Schmitz A, Christensen T, Taagehoej JF. Glomerular filtration rate and kidney volume in normoalbuminuric non-insulin-dependent diabetics—lack of glomerular hyperfiltration and renal hypertrophy in uncomplicated NIDDM. Scand J Clin Lab Invest. 1989;49(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  19. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63(1):225–32.

    Article  PubMed  Google Scholar 

  20. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  21. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139(2):137–47.

    Article  PubMed  Google Scholar 

  22. Mogensen CE, Steffes MW, Deckert T, Christiansen JS. Functional and morphological renal manifestations in diabetes mellitus. Diabetologia. 1981;21(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  23. Brown DM, Andres GA, Hostetter TH, Mauer SM, Price R, Venkatachalam MA. Kidney complications. Diabetes. 1982;31(Suppl 1 Pt 2):71–81.

    Article  CAS  PubMed  Google Scholar 

  24. Christiansen JS, Gammelgaard J, Tronier B, Svendsen PA, Parving HH. Kidney function and size in diabetics before and during initial insulin treatment. Kidney Int. 1982;21(5):683–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mogensen CE. Glomerular filtration rate and renal plasma flow in short-term and long-term juvenile diabetes mellitus. Scand J Clin Lab Invest. 1971;28(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  26. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes. 1973;22(9):706–12.

    CAS  PubMed  Google Scholar 

  27. Mogensen CE. Diabetes mellitus and the kidney. Kidney Int. 1982;21(5):673–5.

    Article  CAS  PubMed  Google Scholar 

  28. Gerich JE, Tsalikian E, Lorenzi M, Schneider V, Bohannon NV, Gustafson G, et al. Normalization of fasting hyperglucagonemia and excessive glucagon responses to intravenous arginine in human diabetes mellitus by prolonged infusion of insulin. J Clin Endocrinol Metab. 1975;41(06):1178–80.

    Article  CAS  PubMed  Google Scholar 

  29. Allen TJ, Cooper ME, Lan HY. Use of genetic mouse models in the study of diabetic nephropathy. Curr Diab Rep. 2004;4(6):435–40.

    Article  PubMed  Google Scholar 

  30. Thomson SC, Vallon V, Blantz RC. Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol. 2004;286(1):F8–15.

    Article  CAS  PubMed  Google Scholar 

  31. Mogensen CE, Andersen MJ. Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin-treatment. Diabetologia. 1975;11(3):221–4.

    Article  CAS  PubMed  Google Scholar 

  32. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19(3):410–5.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–30.

    Article  CAS  PubMed  Google Scholar 

  34. Cortes P, Dumler F, Venkatachalam KK, Levin NW. Effect of diabetes mellitus on renal metabolism. Miner Electrolyte Metab. 1983;9(4–6):306–16.

    CAS  PubMed  Google Scholar 

  35. Arison RN, Ciaccio EI, Glitzer MS, Cassaro JA, Pruss MP. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes. 1967;16(1):51–6.

    CAS  PubMed  Google Scholar 

  36. Cortes P, Dumler F, Venkatachalam KK, Goldman J, Sastry KS, Venkatachalam H, et al. Alterations in glomerular RNA in diabetic rats: roles of glucagon and insulin. Kidney Int. 1981;20(4):491–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cortes P, Levin NW, Dumler F, Rubenstein AH, Verghese CP, Venkatachalam KK. Uridine triphosphate and RNA synthesis during diabetes-induced renal growth. Am J Physiol. 1980;238(4):E349–57.

    CAS  PubMed  Google Scholar 

  38. Parving HH, Rutili F, Granath K, Noer I, Deckert T, Lyngsoe J, et al. Effect of metabolic regulation on renal leakiness to dextran molecules in short-term insulin-dependent diabetics. Diabetologia. 1979;17(3):157–60.

    Article  CAS  PubMed  Google Scholar 

  39. Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12(2):177–86.

    Article  CAS  PubMed  Google Scholar 

  40. Christiansen JS, Gammelgaard J, Orskov H, Andersen AR, Telmer S, Parving HH. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Invest. 1981;11(6):487–90.

    Article  CAS  PubMed  Google Scholar 

  41. Hostetter TH. Renal microcirculation in diabetes mellitus. Acta Endocrinol Suppl (Copenh). 1981;242:22–4.

    CAS  Google Scholar 

  42. Jensen PK, Christiansen JS, Steven K, Parving HH. Renal function in diabetic rats. Acta Endocrinol Suppl (Copenh). 1981;242:25.

    CAS  Google Scholar 

  43. CORVILAIN J, ABRAMOW M, BERGANS A. Some effects of human growth hormone on renal hemodynamics and on tubular phosphate transport in man. J Clin Invest. 1962;41:1230–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. FOX M, THIER S, ROSENBERG L, SEGAL S. Impaired renal tubular function induced by sugar infusion in man. J Clin Endocrinol Metab. 1964;24:1318–27.

    Article  CAS  PubMed  Google Scholar 

  45. Brochner-Mortensen J. The glomerular filtration rate during moderate hyperglycemia in normal man. Acta Med Scand. 1973;1–2(1):31–7.

    PubMed  Google Scholar 

  46. Christiansen JS, Frandsen M, Parving HH. Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics. Diabetologia. 1981;21(4):368–73.

    Article  CAS  PubMed  Google Scholar 

  47. Mogensen CE, Christensen NJ, Gundersen HJ. The acute effect of insulin on renal haemodynamics and protein excretion in diabetics. Diabetologia. 1978;15(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  48. Palatini P. Glomerular hyperfiltration: a marker of early renal damage in pre-diabetes and pre-hypertension. Nephrol Dial Transplant. 2012;27(5):1708–14.

    Article  PubMed  Google Scholar 

  49. Mogensen CE, Keane WF, Bennett PH, Jerums G, Parving HH, Passa P, et al. Prevention of diabetic renal disease with special reference to microalbuminuria. Lancet. 1995;346(8982):1080–4.

    Article  CAS  PubMed  Google Scholar 

  50. Mogensen CE, Christensen CK, Pedersen MM, Alberti KG, Boye N, Christensen T, et al. Renal and glycemic determinants of glomerular hyperfiltration in normoalbuminuric diabetics. J Diabet Complications. 1990;4(4):159–65.

    Article  CAS  PubMed  Google Scholar 

  51. Mogensen CE. Long-term antihypertensive treatment inhibiting progression of diabetic nephropathy. Br Med J (Clin Res Ed). 1982;285(6343):685–8.

    Article  CAS  Google Scholar 

  52. Christiansen JS. On the pathogenesis of the increased glomerular filtration rate in short-term insulin-dependent diabetes. Dan Med Bull. 1984;31(5):349–61.

    CAS  PubMed  Google Scholar 

  53. Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest. 1984;74(4):1143–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Caramori ML, Fioretto P, Mauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes. 2003;52(4):1036–40.

    Article  CAS  PubMed  Google Scholar 

  55. Hansen KW, Mau Pedersen M, Christensen CK, Schmitz A, Christiansen JS, Mogensen CE. Normoalbuminuria ensures no reduction of renal function in type 1 (insulin-dependent) diabetic patients. J Intern Med. 1992;232(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  56. Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo- to microalbuminuria. A longitudinal study in IDDM patients. Diabetes. 1994;43(10):1248–53.

    Article  CAS  PubMed  Google Scholar 

  57. Vittinghus E, Mogensen CE. Graded exercise and protein excretion in diabetic man and the effect of insulin treatment. Kidney Int. 1982;21(5):725–9.

    Article  CAS  PubMed  Google Scholar 

  58. Vittinghus E, Mogensen CE. Albumin excretion and renal haemodynamic response to physical exercise in normal and diabetic man. Scand J Clin Lab Invest. 1981;41(7):627–32.

    Article  CAS  PubMed  Google Scholar 

  59. Koivisto VA, Huttunen NP, Vierikko P. Continuous subcutaneous insulin infusion corrects exercise-induced albuminuria in juvenile diabetes. Br Med J (Clin Res Ed). 1981;282(6266):778–9.

    Article  CAS  Google Scholar 

  60. Viberti G, Pickup JC, Bilous RW, Keen H, Mackintosh D. Correction of exercise-induced microalbuminuria in insulin-dependent diabetics after 3 weeks of subcutaneous insulin infusion. Diabetes. 1981;30(10):818–23.

    Article  CAS  PubMed  Google Scholar 

  61. Allen TJ, Cooper ME, Gilbert RE, Winikoff J, Skinni SL, Jerums G. Serum total renin is increased before microalbuminuria in diabetes. Kidney Int. 1996;50(3):902–7.

    Article  CAS  PubMed  Google Scholar 

  62. Daneman D, Crompton CH, Balfe JW, Sochett EB, Chatzilias A, Cotter BR, et al. Plasma prorenin as an early marker of nephropathy in diabetic (IDDM) adolescents. Kidney Int. 1994;46(4):1154–9.

    Article  CAS  PubMed  Google Scholar 

  63. Comper WD, Osicka TM, Clark M, MacIsaac RJ, Jerums G. Earlier detection of microalbuminuria in diabetic patients using a new urinary albumin assay. Kidney Int. 2004;65(5):1850–5.

    Article  CAS  PubMed  Google Scholar 

  64. Cherney DZ, Sochett EB, Dekker MG, Perkins BA. Ability of cystatin C to detect acute changes in glomerular filtration rate provoked by hyperglycaemia in uncomplicated Type 1 diabetes. Diabet Med. 2010;27(12):1358–65.

    Article  CAS  PubMed  Google Scholar 

  65. Lloyd CE, Stephenson J, Fuller JH, Orchard TJ. A comparison of renal disease across two continents; the epidemiology of diabetes complications study and the EURODIAB IDDM Complications Study. Diabetes Care. 1996;19(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  66. Microvascular and acute complications in IDDM patients: the EURODIAB IDDM Complications Study. Diabetologia. 1994;37(3):278–85.

    Google Scholar 

  67. Marshall SM, Alberti KG. Comparison of the prevalence and associated features of abnormal albumin excretion in insulin-dependent and non-insulin-dependent diabetes. Q J Med. 1989;70(261):61–71.

    CAS  PubMed  Google Scholar 

  68. Mogensen CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med. 2003;254(1):45–66.

    Article  CAS  PubMed  Google Scholar 

  69. American Diabetes Association. Standards of medical care in diabetes-2013. Diabetes Care. 2013;36:S11–65.

    Article  PubMed Central  Google Scholar 

  70. Perkins BA, Ficociello LH, Silva KH, Finkelstein DM, Warram JH, Krolewski AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med. 2003;348(23):2285–93.

    Article  CAS  PubMed  Google Scholar 

  71. Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ. 2004;328(7448):1105.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Lurbe E, Redon J, Kesani A, Pascual JM, Tacons J, Alvarez V, et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med. 2002;347(11):797–805.

    Article  CAS  PubMed  Google Scholar 

  73. Mogensen CE. Antihypertensive treatment inhibiting the progression of diabetic nephropathy. Acta Endocrinol Suppl (Copenh). 1980;238:103–8.

    CAS  Google Scholar 

  74. Kitzmiller JL, Brown ER, Phillippe M, Stark AR, Acker D, Kaldany A, et al. Diabetic nephropathy and perinatal outcome. Am J Obstet Gynecol. 1981;141(7):741–51.

    CAS  PubMed  Google Scholar 

  75. Christensen NJ, Gundersen HJ, Mogensen CE, Vittinghus E. Intravenous insulin decreases urinary albumin excretion in long-term diabetics with nephropathy. Diabetologia. 1980;18(4):285–8.

    Article  CAS  PubMed  Google Scholar 

  76. Marre M, Bernadet P, Gallois Y, Savagner F, Guyene TT, Hallab M, et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes. 1994;43(3):384–8.

    Article  CAS  PubMed  Google Scholar 

  77. Christensen CK, Mogensen CE. Antihypertensive treatment: long-term reversal of progression of albuminuria in incipient diabetic nephropathy. A longitudinal study of renal function. J Diabet Complications. 1987;1(2):45–52.

    Article  CAS  PubMed  Google Scholar 

  78. Feldt-Rasmussen B, Mathiesen ER, Deckert T. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet. 1986;2(8519):1300–4.

    Article  CAS  PubMed  Google Scholar 

  79. Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M, et al. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes. 2005;54(7):2164–71.

    Article  CAS  PubMed  Google Scholar 

  80. Deckert T, Andersen AR, Christiansen JS, Andersen JK. Course of diabetic nephropathy. Factors related to development. Acta Endocrinol Suppl (Copenh). 1981;242:14–5.

    CAS  Google Scholar 

  81. Turin TC, Tonelli M, Manns BJ, Ahmed SB, Ravani P, James M, et al. Proteinuria and life expectancy. Am J Kidney Dis. 2013;61(4):646–8.

    Article  PubMed  Google Scholar 

  82. Bilous RW, Mauer SM, Sutherland DE, Steffes MW. Mean glomerular volume and rate of development of diabetic nephropathy. Diabetes. 1989;38(9):1142–7.

    Article  CAS  PubMed  Google Scholar 

  83. Parving HH, Andersen AR, Smidt UM, Christiansen JS, Oxenboll B, Svendsen PA. Diabetic nephropathy and arterial hypertension. The effect of antihypertensive treatment. Diabetes. 1983;32 Suppl 2:83–7.

    Article  PubMed  Google Scholar 

  84. Parving HH, Andersen AR, Smidt UM, Svendsen PA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1(8335):1175–9.

    Article  CAS  PubMed  Google Scholar 

  85. Viberti GC, Bilous RW, Mackintosh D, Bending JJ, Keen H. Long term correction of hyperglycaemia and progression of renal failure in insulin dependent diabetes. Br Med J (Clin Res Ed). 1983;286(6365):598–602.

    Article  CAS  Google Scholar 

  86. Knowler WC, Bennett PH, Hamman RF, Miller M. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol. 1978;108(6):497–505.

    CAS  PubMed  Google Scholar 

  87. Myers BD, Nelson RG, Williams GW, Bennett PH, Hardy SA, Berg RL, et al. Glomerular function in Pima Indians with noninsulin-dependent diabetes mellitus of recent onset. J Clin Invest. 1991;88(2):524–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Pavkov ME, Bennett PH, Sievers ML, Krakoff J, Williams DE, Knowler WC, et al. Predominant effect of kidney disease on mortality in Pima Indians with or without type 2 diabetes. Kidney Int. 2005;68(3):1267–74.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Vora JP, Leese GP, Peters JR, Owens DR. Longitudinal evaluation of renal function in non-insulin-dependent diabetic patients with early nephropathy: effects of angiotensin-converting enzyme inhibition. J Diabetes Complications. 1996;10(2):88–93.

    Article  CAS  PubMed  Google Scholar 

  90. Nowack R, Raum E, Blum W, Ritz E. Renal hemodynamics in recent-onset type II diabetes. Am J Kidney Dis. 1992;20(4):342–7.

    CAS  PubMed  Google Scholar 

  91. Vora JP, Dolben J, Dean JD, Thomas D, Williams JD, Owens DR, et al. Renal hemodynamics in newly presenting non-insulin dependent diabetes mellitus. Kidney Int. 1992;41(4):829–35.

    Article  CAS  PubMed  Google Scholar 

  92. Schmitz A, Hansen HH, Christensen T. Kidney function in newly diagnosed type 2 (non-insulin-dependent) diabetic patients, before and during treatment. Diabetologia. 1989;32(7):434–9.

    Article  CAS  PubMed  Google Scholar 

  93. Weidmann P, Trost BN. Pathogenesis and treatment of hypertension associated with diabetes. Horm Metab Res Suppl. 1985;15:51–8.

    CAS  PubMed  Google Scholar 

  94. Schmitz A, Gundersen HJ, Osterby R. Glomerular morphology by light microscopy in non-insulin-dependent diabetes mellitus. Lack of glomerular hypertrophy. Diabetes. 1988;37(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  95. Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes. 2005;54(10):2983–7.

    Article  CAS  PubMed  Google Scholar 

  96. Caramori ML, Kim Y, Fioretto P, Huang C, Rich SS, Miller ME, et al. Cellular basis of diabetic nephropathy: IV. Antioxidant enzyme mRNA expression levels in skin fibroblasts of type 1 diabetic sibling pairs. Nephrol Dial Transplant. 2006;21(11):3122–6.

    Article  CAS  PubMed  Google Scholar 

  97. Lane PH, Steffes MW, Mauer SM. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes. 1992;41(5):581–6.

    Article  CAS  PubMed  Google Scholar 

  98. Tsalamandris C, Allen TJ, Gilbert RE, Sinha A, Panagiotopoulos S, Cooper ME, et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43(5):649–55.

    Article  CAS  PubMed  Google Scholar 

  99. Nelson RG, Knowler WC, McCance DR, Sievers ML, Pettitt DJ, Charles MA, et al. Determinants of end-stage renal disease in Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus and proteinuria. Diabetologia. 1993;36(10):1087–93.

    Article  CAS  PubMed  Google Scholar 

  100. Brito PL, Fioretto P, Drummond K, Kim Y, Steffes MW, Basgen JM, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53(3):754–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aileen K. Wang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, A.K., Thethi, T.K. (2014). Natural Course (Stages/Evidence-Based Discussion). In: Lerma, E., Batuman, V. (eds) Diabetes and Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0793-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0793-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0792-2

  • Online ISBN: 978-1-4939-0793-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics