Skip to main content

Advertisement

Log in

Use of genetic mouse models in the study of diabetic nephropathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The study of experimental diabetic nephropathy in rodent models has led to many changes in the clinical management of human diabetic nephropathy. With the development of technology to generate knockout and transgenic animals, the mouse has become a favored species in medical research. There are several genetic mouse models of diabetes, with the majority being models of type 2 diabetes mellitus. These include the hypoinsulinemic nonobese diabetic mouse, the KKAy mouse, the New Zealand obese mouse, the hyperinsulinemic ob/ob mouse, and the different strains of obese hyperinsulinemic db/db mouse. Each of these models displays some renal changes, but by far the best model of renal disease and the one that is the most studied is the db/db mouse. The db/db mouse displays substantial glomerular pathology, including mesangial matrix expansion and modest albuminuria. It has been reported that the db/db mouse has a decline in creatinine clearance after 5 months of age, but more specific approaches are warranted to confirm these findings. A number of intervention studies show renoprotection in this model. Although mice have many advantages, such as being able to be crossbred with genetically manipulated animals, in many ways they are not very similar to humans, and in some respects the rat may be a better choice, particularly in relation to some features of end-organ injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cooper ME, Allen TJ, Macmillan PA, et al.: Enalapril retards glomerular basement membrane thickening and albuminuria in the diabetic rat. Diabetologia 1989, 32:326–328.

    Article  PubMed  CAS  Google Scholar 

  2. Zatz R, Dunn BR, Meyer TW, Brenner B: Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986, 77:1925–1930.

    PubMed  CAS  Google Scholar 

  3. Anders H, Schlondorff D: Murine models of renal disease: possibilities and problems in studies using mutant mice. Exp Nephrol 2000, 8:181–193. An interesting review comparing many different rodent models of renal disease, including diabetic nephropathy.

    Article  PubMed  CAS  Google Scholar 

  4. Cooper ME: Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 1998, 352:213–219.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper ME, Gilbert RE, Allen TJ: Experimental diabetic nephropathy. In Lessons from Animal Diabetes, edn 7. Edited by Sima A. Amsterdam: Elsevier; 1996:207–223.

    Google Scholar 

  6. Velasquez MT, Kimmel PL, Michaelis OE: Animal models of spontaneous diabetic kidney disease. FASEB J 1990, 4:2850–2859.

    PubMed  CAS  Google Scholar 

  7. Doi T, Hattori M, Agodoa LY, et al.: Glomerular lesions in nonobese diabetic mouse: before and after the onset of hyperglycemia. Lab Invest 1990, 63:204–212.

    PubMed  CAS  Google Scholar 

  8. Yang CW, Hattori M, Vlassara H, et al.: Overexpression of transforming growth factor-beta 1 mRNA is associated with up-regulation of glomerular tenascin and laminin gene expression in nonobese diabetic mice. J Am Soc Nephrol 1995, 5:1610–1617.

    PubMed  CAS  Google Scholar 

  9. Liu ZH, Striker LJ, Hattori M, et al.: Localization of glutamic acid decarboxylase in the kidneys of nonobese diabetic mice. Nephron 1996, 72:662–666.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma K, Ziyadeh FN: Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995, 44:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  11. Wilson KH, Eckenrode SE, Li QZ, et al.: Microarray analysis of gene expression in the kidneys of new- and post-onset diabetic NOD mice. Diabetes 2003, 52:2151–2159. This study used microarray analysis to identify genes linked to progression of renal disease; however, this approach can only be considered as an initial step in elucidating new pathways linked to development of diabetic nephropathy.

    Article  PubMed  CAS  Google Scholar 

  12. Maeda M, Yabuki A, Suzuki S, et al.: Renal lesions in spontaneous insulin-dependent diabetes mellitus in the nonobese diabetic mouse: acute phase of diabetes. Vet Pathol 2003, 40:187–195.

    Article  PubMed  CAS  Google Scholar 

  13. He CJ, Zheng F, Stitt A, et al.: Differential expression of renal AGE-receptor genes in NOD mice: possible role in nonobese diabetic renal disease. Kidney Int 2000, 58:1931–1940.

    Article  PubMed  CAS  Google Scholar 

  14. Wahab NA, Yevdokimova N, Weston BS, et al.: Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem J 2001, 359:77–87.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng F, He C, Cai W, et al.: Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev 2002, 18:224–237.

    Article  PubMed  Google Scholar 

  16. Melez KA, Harrison LC, Gilliam JN, Steinberg AD: Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes 1980, 29:835–840.

    Article  PubMed  CAS  Google Scholar 

  17. Hummel KP, Coleman DL, Lan PW: The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I C57BL/KsJ and C57BL/6J strains. Biochem Genet 1971, 7:1–13.

    Article  Google Scholar 

  18. Han DC, Isono M, Chen S, et al.: Leptin stimulates type I collagen production in db/db mesangial cells: glucose uptake and TGF-beta type II receptor expression. Kidney Int 2001, 59:1315–1323.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma K, McCue P, Dunn SR: Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 2003, 284:F1138-F1144. An excellent comprehensive review on the db/db mouse model assessing all aspects of kidney disease.

    PubMed  CAS  Google Scholar 

  20. Hummel KP, Dickie MM, Coleman DL: Diabetes, a new mutation in the mouse. Science 1966, 153:1127–1128.

    Article  PubMed  CAS  Google Scholar 

  21. Chen H, Charlat O, Tartaglia LA, et al.: Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996, 84:491–495.

    Article  PubMed  CAS  Google Scholar 

  22. Lee SM, Bressler R: Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes 1981, 30:106–111.

    Article  PubMed  CAS  Google Scholar 

  23. Chow F, Ozols E, Nikolic-Paterson DJ, et al.: Macrophages in mouse type 2 diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney Int 2004, 65:116–128. A detailed, long-term study of db/db mouse renal disease up to 8 months of age. The authors observed correlations between the presence of macrophages and sites of renal fibrosis in this model.

    Article  PubMed  CAS  Google Scholar 

  24. Cohen MP, Clements RS, Hud E, et al.: Evolution of renal function abnormalities in the db/db mouse that parallels the development of human diabetic nephropathy. Exp Nephrol 1996, 4:166–171.

    PubMed  CAS  Google Scholar 

  25. Lee SM, Tutwiler G, Bressler R, Kircher CH: Metabolic control of prevention of nephropathy by 2-tetradecylglycidate in the diabetic mouse (db/db). Diabetes 1982, 31:12–18.

    Article  PubMed  CAS  Google Scholar 

  26. Lee SM, Graham A: Early immunopathologic events in experimental diabetic nephropathy: a study in db/db mice. Exp Mol Pathol 1980, 33:323–332.

    Article  PubMed  CAS  Google Scholar 

  27. Like AA, Lavine RL, Poffenbarger PL, Chick WL: Studies in the diabetic mutant mouse. VI. Evolution of glomerular lesions and associated proteinuria. Am J Pathol 1972, 66:193–224.

    PubMed  CAS  Google Scholar 

  28. Gartner K: Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (c57bl/6j db/db and c57bl/ksj db/db). Diabetologia 1978, 15:59–63.

    Article  PubMed  CAS  Google Scholar 

  29. Ziyadeh FN, Hoffman BB, Han DC, et al.: Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factorbeta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 2000, 97:8015–8020. This landmark study demonstrated the importance of TGF-â in the renal damage associated with the db/db mouse model.

    Article  PubMed  CAS  Google Scholar 

  30. Meyer MH, Meyer RA Jr, Gray RW, Irwin RL: Picric acid methods greatly overestimate serum creatinine in mice: more accurate results with high-performance liquid chromatography. Anal Biochem 1985, 144:285–290.

    Article  PubMed  CAS  Google Scholar 

  31. Yuen PS, Dunn SR, Miyaji T, et al.: Simplified method for HPLC determination of creatinine in mouse serum. J Am Soc Nephrol 2003, 14:277A.

    Google Scholar 

  32. Cohen MP, Lautenslager GT, Shearman CW: Increased urinary type IV collagen marks the development of glomerular pathology in diabetic d/db mice. Metabolism 2001, 50:1435–1440.

    Article  PubMed  CAS  Google Scholar 

  33. Koya D, Haneda M, Nakagawa H, et al.: Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000, 14:439–447.

    PubMed  CAS  Google Scholar 

  34. Gilbert RE, Cooper ME: The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 1999, 56:1627–1637.

    Article  PubMed  CAS  Google Scholar 

  35. Wada T, Furuichi K, Sakai N, et al.: Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int 2000, 58:1492–1499.

    Article  PubMed  CAS  Google Scholar 

  36. Cohen MP, Hud E, Wu VY: Amelioration of diabetic nephropathy by treatment with monoclonal antibodies against glycated albumin. Kidney Int 1994, 45:1673–1679.

    PubMed  CAS  Google Scholar 

  37. Cohen MP, Sharma K, Jin Y, et al.: Prevention of diabetic nephropathy in db/db mice with glycated albumin antagonists. A novel treatment strategy. J Clin Invest 1995, 95:2338–2345.

    Article  PubMed  CAS  Google Scholar 

  38. Neeper M, Schmidt AM, Brett J, et al.: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992, 267:14998–15004.

    PubMed  CAS  Google Scholar 

  39. Wendt TM, Tanji N, Guo J, et al.: RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 2003, 162:1123–1137.

    PubMed  CAS  Google Scholar 

  40. Flyvbjerg A, Denner L, Schrijvers BF, et al.: Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 2004, 53:166–172. This study provides further evidence that the receptor for RAGE plays a pivotal role in mediating renal injury in diabetes.

    Article  PubMed  CAS  Google Scholar 

  41. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, et al.: Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 2002, 51:3090–3094.

    Article  PubMed  CAS  Google Scholar 

  42. Cooper ME, Vranes D, Youssef S, et al.: Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999, 48:2229–2239.

    Article  PubMed  CAS  Google Scholar 

  43. Aiello LP, Avery RL, Arrigg PG, et al.: Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994, 331:1480–1487.

    Article  PubMed  CAS  Google Scholar 

  44. McElhaugh WF, Wilkinson-Berka JL, Cao Z, et al.: Differential Regulation of Key Biomarkers by TGF-Beta and Angiotensin II in the Diabetic (mRen-2)27 Rat Model. J Am Soc Nephrol 2003, 14:131A.

    Article  Google Scholar 

  45. Leclercq B, Zheng F, Berho M, et al.: Decreased mortality and albuminuria following pyridoxamine and enalapril therapy in an obese mouse model of type 2 diabetes mellitus with established nephropathy. J Am Soc Nephrol 2003, 14:396A.

    Google Scholar 

  46. Degenhardt TP, Alderson NL, Arrington DD, et al.: Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int 2002, 61:939–950.

    Article  PubMed  CAS  Google Scholar 

  47. Vasan S, Zhang X, Kapurniotu A, et al.: An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 1996, 382:275–278.

    Article  PubMed  CAS  Google Scholar 

  48. Forbes JM, Thallas V, Thomas MC, et al.: The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003, 17:1762–1764.

    PubMed  CAS  Google Scholar 

  49. Park CW, Zhang Y, Fan F, et al.: A PPAR alpha agonist improves diabetic nephropathy in db/db mice. J Am Soc Nephrol 2003, 14:393A (SA-PO439).

    Google Scholar 

  50. Zhang Y, Park C, Zheng F, et al.: Endogenous PPAR alpha activity ameliorates diabetic nephropathy. J Am Soc Nephrol 2003, 14:392A (SA-PO434).

    Google Scholar 

  51. Tchekneva E, Zhonghua Qi Z, Polosukhina D, et al.: A cyclooxygenase-1 (COX-1) selective inhibitor improves diabetic glomerulopathy in mice. J Am Soc Nephrol 2003, 14:393A (SA-PO441).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T.J., Cooper, M.E. & Lan, H.Y. Use of genetic mouse models in the study of diabetic nephropathy. Curr Diab Rep 4, 435–440 (2004). https://doi.org/10.1007/s11892-004-0053-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-004-0053-1

Keywords

Navigation