Skip to main content

Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization

  • Chapter
  • First Online:
Mathematical Oncology 2013

Abstract

In this short review paper, I will present the mathematical models that have been designed in the frame of continuous deterministic cell population dynamics that aim at optimization of cancer treatments using chronotherapeutics. Many authors have dealt with chronobiology of cancer, less with continuous mathematical models and even less with the declared aim to optimize chronotherapeutics. The biological and theoretical bases for these models are sketched, started from a historical viewpoint, and the main theoretical results are presented, with biological suggestions to account for them. Chronotherapeutics that leads to therapeutic optimization with the constraint of limiting unwanted toxicity of anticancer drugs towards healthy cell populations is put in a medical perspective together with the other main pitfall of cancer therapeutics, for which optimization procedures should have little to do with circadian biology, i.e., emergence of drug resistance in cancer cell populations, which is amenable to the use of other sorts of models, that are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Altinok, D. Gonze, F. Lévi, A. Goldbeter, An automaton model for the cell cycle. Interface focus 1, 36–47 (2011)

    Article  Google Scholar 

  2. A. Altinok, F. Lévi, A. Goldbeter. A cell cycle automaton model for probing circadian patterns of anticancer drug delivery. Adv. Drug Deliv. Rev. 59, 1036–1010 (2007)

    Article  Google Scholar 

  3. A. Altinok, F. Lévi, A. Goldbete, Optimizing temporal patterns of anticancer drug delivery by simulations of a cell cycle automaton. In M. Bertau, E. Mosekilde, and H. Westerhoff, editors, Biosimulation in Drug Development, pp. 275–297. (Wiley, 2008)

    Google Scholar 

  4. A. Altinok, F. Lévi, A. Goldbeter, Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur. J. Pharm. Sci. 36, 20–38 (2009)

    Article  Google Scholar 

  5. H. Ando, H. Yanagihara, K.-i. Sugimoto, Y. Hayashi, S. Tsuruoka, T. Takamura, S. Kaneko, A. Fujimura, Daily rhythms of p-glycoprotein expression in mice. Chronobiol. Int. 22(4), 655–665 (2005)

    Google Scholar 

  6. O. Arino. A survey of structured cell population dynamics. Acta Biotheor. 43, 3–25 (1995)

    Article  Google Scholar 

  7. A. Ballesta, J. Clairambault, S. Dulong, F. Lévi, in A Systems Biomedicine Approach for Chronotherapeutics Optimization: Focus on the Anticancer Drug Irinotecan, ed. by A. d’Onofrio, P. Cerrai, A. Gandolfi. New Challenges for Cancer Systems Biomedicine, part V, SIMAI Lecture Notes (Springer, New York, 2012), pp. 301–327

    Google Scholar 

  8. C. Basdevant, J. Clairambault, F. Lévi, Optimisation of time-scheduled regimen for anti-cancer drug infusion. Math. Model. Numerical Anal. 39, 1069–1086 (2006)

    Article  Google Scholar 

  9. B. Basse, B. Baguley, E. Marshall, G. Wake, D. Wall, Modelling the flow cytometric data obtained from unperturbed human tumour cell lines: Parameter fitting and comparison. Bull. Math. Biol. 67, 815–830 (2005)

    Article  MathSciNet  Google Scholar 

  10. B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B. van Brunt, G. Wake, and D.J.N. Wall, A mathematical model for analysis of the cell cycle in cell lines derived from human tumors. J. Math. Biol. 47, 295–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Bekkal Brikci, J. Clairambault, B. Perthame, Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Model. 47(7), 699–713 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame, An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57(1), 91–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Bernard, B.C. Bernard, F. LĂ©vi, H. Herzel, Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput. Biol. 6(3), e1000712 (2010)

    Google Scholar 

  14. S. Bernard, D. Gonze, B. ÄŚajavec, H. Herzel, A. Kramer, Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput. Biol. 3(4), e68 (2007)

    Google Scholar 

  15. F. Billy J. Clairambault, Designing proliferating cell population models with functional targets for control by anti-cancer drugs. Discrete and Continuous Dynamical Systems - Series B, 18(4), 865–889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Billy, J. Clairambault, F. Delaunay, C. Feillet, N. Robert, Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Math. Biosci. Eng. 10, 1–17 (2012)

    Article  MathSciNet  Google Scholar 

  17. F. Billy, J. Clairambault, O. Fercoq, in Optimisation of Cancer Drug Treatments Using Cell Population Dynamics, ed. by A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler. Mathematical Methods and Models in Biomedicine, part 4 (Springer, New-York, 2013), pp. 265–309

    Google Scholar 

  18. F. Billy, J. Clairambault, O. Fercoq, S. Gaubert, T. Lepoutre, T. Ouillon, S. Saito, Synchronisation and control of proliferation in cycling cell population models with age structure. Mathematics and Computers in Simulation, 96, 66–94 (2014)

    Article  MathSciNet  Google Scholar 

  19. G. Bjarnason, R. Jordan, R. Sothern. Circadian variation in the expression of cell-cycle proteins in the human oral epithelium. Am. J. Pathol 154, 613–622 (1999)

    Article  Google Scholar 

  20. R. Borges, À. Calsina, S. Cuadrado, Equilibria of a cyclin structured cell population model. Discrete Continuous Dynam, Syst. Series B 11, 613–627 (2009)

    Google Scholar 

  21. R. Borges, À. Calsina, S. Cuadrado, Oscillations in a molecular structured cell population model. Nonlinear Anal.: Real World Appl. 12(4), 1911–1922 (2011)

    Google Scholar 

  22. J. Clairambault, Modelling oxaliplatin drug delivery to circadian rhythm in drug metabolism and host tolerance. Adv. Drug Deliv. Rev. 59, 1054–1068 (2007)

    Article  Google Scholar 

  23. J. Clairambault, A step toward optimization of cancer therapeutics. physiologically based modelling of circadian control on cell proliferation. IEEE-EMB Magazine 27, 20–24 (2008)

    Google Scholar 

  24. J. Clairambault, O.Fercoq. in Mathematical Modelling of Cancer Growth and Treatment, eds by M. Bachar, J. Batze, and M. Chaplain, LNMBIOS SubseriesPhysiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology. (Springer, New York, 2013) To appear, 2013. Available as preprint at http://hal.archives-ouvertes.fr/hal-00750633.

  25. J. Clairambault, S. Gaubert, T. Lepoutre, Comparison of Perron and Floquet eigenvalues in age structured cell division models. Math. Model. Nat. Phenomena 4, 183–209 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Clairambault, S. Gaubert, T. Lepoutre, Circadian rhythm and cell population growth. Math. Comput. Model. 53, 1558–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Clairambault, S. Gaubert, B. Perthame, An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age-structured equations. C. R. Acad. Sci. (Paris) Ser. I Mathématique 345, 549–554 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Clairambault, B. Laroche, S. Mischler, B. Perthame, A mathematical model of the cell cycle and its control. Technical report, Number 4892, INRIA, Domaine de Voluceau, BP 105, 78153 Rocquencourt, France (2003)

    Google Scholar 

  29. J. Clairambault, P. Michel, B. Perthame, Circadian rhythm and tumour growth. C. R. Acad. Sci. (Paris) Ser. I Mathématique (Équations aux dérivées partielles) 342, 17–22 (2006)

    Google Scholar 

  30. A. Coldman, J. Goldie, A model for the resistance of tumor cells to cancer chemotherapeutic agents. Math. Biosci. 65(2), 291–307 (1983)

    Article  MATH  Google Scholar 

  31. M. Costa, J. Boldrini, R. Bassanezi, Chemotherapeutic treatments involving drug resistance and level of normal cells as a criterion of toxicity. Math. Biosci. 125(2), 211–228 (1995)

    Article  MATH  Google Scholar 

  32. M. Costa, J. Boldrini, R. Bassanezi, Drug kinetics and drug resistance in optimal chemotherapy. Math. Biosci. 125(2), 191–209 (1995)

    Article  MATH  Google Scholar 

  33. S. Davis, D.K. Mirick, Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in seattle. Cancer Causes Cont. 17(4), 539–545 (2006)

    Article  Google Scholar 

  34. L.G. de Pillis, W. Gu, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol. 238(4), 841–862 (2006)

    Article  Google Scholar 

  35. L.G. de Pillis, A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Computat. Math. Meth. Medicine 3(2), 79–100, (2001)

    MATH  Google Scholar 

  36. L.G. de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)

    Google Scholar 

  37. M. Delitala, T. Lorenzi, Recognition and learning in a mathematical model for immune response against cancer. Discrete and Cont. Dynam. Syst.-Series B 18(4), 891–914 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Dibner, U. Schibler, U. Albrecht, The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual Rev. Physiol 72, 517–549 (2010)

    Article  Google Scholar 

  39. A. d’Onofrio, A. Fasano, B. Monechi, A generalization of Gompertz law compatible with the gyllenberg-webb theory for tumour growth. Math. Biosci. 230(1), 45–54 (2011)

    Google Scholar 

  40. M. Doumic, Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom 2(3), 121–152 (2007)

    Article  MathSciNet  Google Scholar 

  41. B. Druker, M. Talpaz, D. Resta, B. Peng, E. Buchdunger, J. Ford, N. Lydon, H. Kantarjian, R. Capdeville, S. Ohno-Jones, C. Sawyers, Efficacy and safety of a specific inhibitor of the bcr-abl tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001)

    Article  Google Scholar 

  42. E. Filipski, P.F. Innominato, M. Wu, X.-M. Li, S. Iacobelli, L.-J. Xian, F. Lvi, Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl. Cancer Inst. 97(7), 507–517 (2005)

    Article  Google Scholar 

  43. E. Filipski, V.M. King, X. Li, T.G. Granda, M.-C. Mormont, X. Liu, B. Claustrat, M.H. Hastings, F. Lvi, Host circadian clock as a control point in tumor progression. J. Natl. Cancer Inst. 94(9), 690–697 (2002)

    Article  Google Scholar 

  44. L. Fu, N.M. Kettner, The circadian clock in cancer development and therapy. Prog. Mol. Biol. Transl. Sci. 119, 221–282 (2013)

    Article  Google Scholar 

  45. L. Fu, H. Pelicano, J. Liu, P. Huang, C. Lee, The circadian gene per2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41–50 (2002)

    Article  Google Scholar 

  46. P. Gabriel, S.P. Garbett, V. Quaranta, D.R. Tyson, G.F. Webb, The contribution of age structure to cell population responses to targeted therapeutics. J. Theor. Biol. 311, 19–27 (2012)

    Article  MathSciNet  Google Scholar 

  47. C. GĂ©rard, A. Goldbeter, Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. PLoS Comput. Biol. 8(5), e1002516 (2012)

    Google Scholar 

  48. M. Gerlinger, A.J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P. Martinez, N. Matthews, A. Stewart, P. Tarpey, I. Varela, B. Phillimore, S. Begum, N.Q. McDonald, A. Butler, D. Jones, K. Raine, C. Latimer, C.R. Santos, M. Nohadani, A.C. Eklund, B. Spencer-Dene, G. Clark, L. Pickering, G. Stamp, M. Gore, Z. Szallasi, J. Downward, P.A. Futreal, C. Swanton, Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012)

    Article  Google Scholar 

  49. S. Giacchetti, P.A. Dugue, P.F. Innominato, G.A. Bjarnason, C. Focan, C. Garufi, S. Tumolo, B. Coudert, S. Iacobelli, R. Smaaland, et al., Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis. Annal. Oncol. 23(12), 3110–3116 (2012)

    Article  Google Scholar 

  50. A. Goldbeter, A model for circadian oscillations in the drosophila period protein (per). Proc. Royal Soc. London. Series B: Biol. Sci. 261(1362), 319–324 (1995)

    Article  Google Scholar 

  51. J. Goldie, A. Coldman, Quantitative model for multiple levels of drug resistance in clinical tumors. Cancer Treat. Reports 67(10), 923–931 (1983)

    Google Scholar 

  52. D.A. Golombek, R.E. Rosenstein, Physiology of circadian entrainment. Physiol. Rev. 90(3), 1063–1102 (2010)

    Article  Google Scholar 

  53. D. Gonze, S. Bernard, C. Waltermann, A. Kramer, H. Herzel, Spontaneous synchronization of coupled circadian oscillators. Biophys. J. 89(1), 120–129 (2005)

    Article  Google Scholar 

  54. D. Gonze, J. Halloy, A. Goldbeter, Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. U S A 99(2), 673–678 (2002)

    Article  Google Scholar 

  55. M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of atp-dependent transporters. Nat. Rev. Cancer 2(1), 48–58 (2002)

    Article  Google Scholar 

  56. A. Gréchez-Cassiau, B. Rayet, F. Guillaumond, M. Teboul, and F. Delaunay, The circadian clock component Bmal1 is a critical regulator of p21 (WAF1/CIP1) expression and hepatocyte proliferation. J. Biol. Chem. 283, 4535–42 (2008)

    Article  Google Scholar 

  57. J. Greene, O. Lavi, M.M. Gottesman, D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bulletin of Mathematical Biology, 76, 627–653 (2014)

    Article  MathSciNet  Google Scholar 

  58. M. Gyllenberg, G.F. Webb, Quiescence as an explanation of gompertzian tumor growth. Growth Dev. Aging 53, 25–33 (1989)

    Google Scholar 

  59. M. Gyllenberg, G.F. Webb, A nonlinear structured population model of tumor growth witsh quiescence. J. Math. Biol. 28, 671–694 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  60. T. Haferlach, Molecular genetic pathways as therapeutic targets in acute myeloid leukemia. Hematology 2008, 400–411 (2008) Am. Soc. Hematol. Educ. Program.

    Google Scholar 

  61. F. Halberg, Chronobiology. Annual Rev. Physiol. 31(1), 675–726 (1969)

    Article  Google Scholar 

  62. J. Hansen, Risk of breast cancer after night-and shift work: current evidence and ongoing studies in denmark. Cancer Causes Cont. 17(4), 531–537 (2006)

    Article  Google Scholar 

  63. M.H. Hastings, A.B. Reddy, E.S. Maywood, A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 4(8), 649–661 (2003)

    Article  Google Scholar 

  64. E. Haus M. Smolensky, Biological clocks and shift work: Circadian dysregulation and potential long-term effects. Cancer Causes Cont. 17(4), 489–500 (2006)

    Article  Google Scholar 

  65. E.C. Hayden, Cutting off cancer’s supply lines. Nature 458(7239), 686 (2009)

    Google Scholar 

  66. M. Horiguchi, S. Koyanagi, A.M. Hamdan, K. Kakimoto, N. Matsunaga, C. Yamashita, S. Ohdo, Rhythmic control of the ARF-MDM2 pathway by ATF4 underlies circadian accumulation of p53 in malignant cells. Cancer Res. 73(8), 2639–2649 (2013)

    Article  Google Scholar 

  67. B.L. Keyfitz, N. Keyfitz, The McKendrick partial differential equation and its uses in epidemiology and population study. Math. Comput. Model. 26(6), 1–9 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  68. P.S. Kim P.P. Lee, Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach. PLoS Computat. Biol. 8(10), e1002742 (2012)

    Google Scholar 

  69. M. Kimmel, A. Swierniak, Control theory approach to cancer chemotherapy: Benefiting from phase dependence and overcoming drug resistance, in Tutorials in Mathematical Biosciences III, (Springer, Newyork, 2006) pp. 185–221

    Google Scholar 

  70. R. Konopka, S. Benzer, Clock mutants of drosophila melanogaster. Proc. Natl. Acad. Sci. U S A 68, 2112–16 (1971)

    Article  Google Scholar 

  71. O. Lavi, J. Greene, D. Levy, M.M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Research, 73, 7168–71775 (2013)

    Article  Google Scholar 

  72. J.-C. Leloup, A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock. Proc. Natl. Acad. Sci. U S A 100(12), 7051–7056 (2003)

    Article  Google Scholar 

  73. J.C. Leloup, D. Gonze, A. Goldbeter. Limit cycle models for circadian rhythms based on transcriptional regulation in drosophila and neurospora. J. Biol. Rhythms 14(6), 433–448 (1999)

    Article  Google Scholar 

  74. F. Lévi, A. Okyar, S. Dulong, P. Innominato, J. Clairambault, Circadian timing in cancer treatments. Annual Rev. Pharmacol. Toxicol. 50 377–421 (2010)

    Article  Google Scholar 

  75. F.A. Lévi, C. Canon, Y. Touitou, J. Sulon, M. Mechkouri, E. Demey-Ponsart, J.P. Touboul, J.M. Vannetzel, I. Mowzowicz, A. Reinberg, Circadian rhythms in circulating T lymphocyte subtypes and plasma testosterone, total and free cortisol in five healthy men. Clin. Exp. Immunol. 71(2), 329–335 (1988)

    Google Scholar 

  76. A. Levitzki, Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annual Rev. Pharmacol. Toxicol. 53, 161–185 (2013)

    Article  Google Scholar 

  77. A. Lorz, B. Perthame, T. Lorenzi, M.E. Hochberg, J. Clairambault. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapy. ESAIM: Math. Model. Numer. Anal. 47(1), 377–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Masri, M. Cervantes, P. Sassone-Corsi, The circadian clock and cell cycle: interconnected biological circuits. Curr. Opin. Cell. Biol. (2013)

    Google Scholar 

  79. T. Matsuo, S. Yamaguchi, S. Mitsuia, A. Emi, F. Shimoda, H. Okamura, Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255–259 (2003)

    Article  Google Scholar 

  80. F. Mazenc, P.S. Kim, S.-I. Niculescu, Stability of an imatinib and immune model with delays. IMA J. Math. Cont. Inform. 28(4), 447–462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  81. A. McKendrick, Applications of mathematics to medical problems. Proc. Edinburgh Math. Soc. 54, 98–130 (1926)

    Google Scholar 

  82. J. Metz, O. Diekmann, The dynamics of physiologically structured populations, vol. 68 Lecture Notes in Biomathematics (Springer, New York, 1986)

    Google Scholar 

  83. M.C. Mormont, F. Lévi, Cancer chronotherapy: principles, applications, and perspectives. Cancer 97(1), 155–169 (2003)

    Article  Google Scholar 

  84. W. Nelson, Y. L. Tong, J. K. Lee, F. Halberg, Methods for cosinor-rhythmometry. Chronobiologia 6(4), 305–323 (1979)

    Google Scholar 

  85. A. Okyar, E. Piccolo, C. Ahowesso, E. Filipski, V. Hossard, C. Guettier, R. La Sorda, N. Tinari, S. Iacobelli, F. LĂ©vi, Strain- and sex-dependent circadian changes in ABCC2 transporter expression: implications for irinotecan chronotolerance in mouse ileum. PLoS One 6(6), e20393 (2011)

    Google Scholar 

  86. B. Perthame, Transport Equations in Biology. Frontiers in Mathematics series (Birkhäuser, Boston, 2007)

    Google Scholar 

  87. T. Rich, P. Innominato, J. Boerner, M.-C. Mormont, S. Iacobelli, B. Baron, C. Jasmin, F. Lévi, Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity pattern in patients with metastatic colorectal cancer. Clin. Cancer Res. 11, 1757–64 (2005)

    Article  Google Scholar 

  88. J.M. Rowe B. Löwenberg, Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood 121(24), 4838–4841 (2013)

    Article  Google Scholar 

  89. P. Ruoff, M. Vinsjevik, C. Monnerjahn, L. Rensing. The goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of neurospora crassa. J. Theor. Biol. 209(1), 29–42 (2001)

    Article  Google Scholar 

  90. A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi, K. Fukami, T. Miyata, H. Miyoshi, T. Imamura, M. Ogawa, H. Masai, A. Miyawaki, Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 32, 487–498 (2008)

    Article  Google Scholar 

  91. A. Sakaue-Sawano, K. Ohtawa, H. Hama, M. Kawano, M. Ogawa, A. Miyawaki, Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem Biol. 15, 1243–48 (2008)

    Article  Google Scholar 

  92. E.S. Schernhammer, F. Laden, F.E. Speizer, W.C. Willett, D.J. Hunter, I. Kawachi, C.S. Fuchs, G.A. Colditz, Night-shift work and risk of colorectal cancer in the nurses health study. J. National Cancer Instit. 95(11), 825–828 (2003)

    Article  Google Scholar 

  93. A.M. Scott, J.D. Wolchok, L.J. Old, Antibody therapy of cancer. Nat. Rev. Cancer 12(4), 278–287 (2012)

    Article  Google Scholar 

  94. S.E. Sephton, R.M. Sapolsky, H.C. Kraemer, D. Spiegel, Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl. Cancer Instit. 92(12), 994–1000, (2000)

    Article  Google Scholar 

  95. F.R. Sharpe, A.J. Lotka, L. A problem in age-distribution. Philosophical Magazine Series 6 21, 435–438 (1911)

    Google Scholar 

  96. R. Smaaland, O. Laerum, K. Lote, O. Sletvold, R. Sothern, R. Bjerknes. DNA synthesis in human bone marrow is circadian stage dependent. Blood 77, 2603–2611 (1991)

    Google Scholar 

  97. S. Suzuki, S. Toyabe, T. Moroda, T. Tada, A. Tsukahara, T. Iiai, M. Minagawa, S Maruyama, K. Hatakeyama, K.Endoh, T.Abo, Circadian rhythm of leucocytes and lymphocytes subsets and its possible correlation with the function of the autonomic nervous system. Clin Exp. Immunol. 110(3), 500–508 (1997)

    Google Scholar 

  98. B. Sweeney, Rhythmic phenomena in plants (Academic Press, New York 1969)

    Google Scholar 

  99. A. Świerniak, M. Kimmel, J. Smieja, Mathematical modeling as a tool for planning anticancer therapy. Eur. J. Pharmacol. 625(1), 108–121 (2009)

    Article  Google Scholar 

  100. H. Terazono, A. Hamdan, N. Matsunaga, N. Hayasaka, H. Kaji, T. Egawa, K. Makino, Y. Shigeyoshi, S. Koyanagi, S. Ohdo, Modulatory effects of 5-fluorouracil on the rhythmic expression of circadian clock genes: a possible mechanism of chemotherapy-induced circadian rhythm disturbances. Biochem. pharmacol. 75(8), 1616–1622 (2008)

    Article  Google Scholar 

  101. T. Tozer, M. Rowland, Introduction to Pharmacokinetics and Pharmacodynamics: the Quantitative Basis of Drug Therapy (Lippincott 2006)

    Google Scholar 

  102. Y. Tsukamoto, Y. Kato, M. Ura, I. Horii, H. Ishitsuka, H. Kusuhara, Y. Sugiyama, A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mechanism for tumor-selective accumulation of 5-FU. Pharm. Res. 18(8), 1066, 1190–1202 (2001)

    Google Scholar 

  103. M.H. Vitaterna, D.P. King, A.-M. Chang, J.M. Kornhauser, P.L. Lowrey, J.D. McDonald, W.F. Dove, L.H. Pinto, F.W. Turek, J.S. Takahashi, Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159), 719–725 (1994)

    Article  Google Scholar 

  104. H. Von Foerster, in Some Remarks on Changing Populations, ed. by F. Stohlman Jr. The kinetics of Cellular Proliferation (Grune and Stratton, New York, 1959), pp. 382–407

    Google Scholar 

  105. M. Wu, X. Li, L. Xian, F. Lévi, Effects of meal timing on tumor progression in mice. Life Sci. 75(10), 1181–1193 (2004)

    Article  Google Scholar 

  106. L. Zitvogel, L. Apetoh, F. Ghiringhelli, G. Kroemer, Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008)

    Article  Google Scholar 

  107. L. Zitvogel, L. Galluzzi, M.J. Smyth, G. Kroemer, Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1), 74–88 (2013)

    Article  Google Scholar 

  108. L. Zitvogel, O. Kepp, G. Kroemer, Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8(3), 151–160 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author is gratefully indebted to his young colleagues Frédérique Billy and Olivier Fercoq for the work achieved together in modelling, model identification and theoretical therapeutic optimization, and to Francis Lévi for his long-lasting collaboration and frequent and fruitful discussions. This work has been supported by a grant from the European Research Area in Systems Biology (ERASysBio+) to the French National Research Agency (ANR) #ANR-09-SYSB-002 for the research network Circadian and Cell Cycle Clock Systems in Cancer (C5Sys) coordinated by Francis Lévi (INSERM U776, Villejuif, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Clairambault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clairambault, J. (2014). Deterministic Mathematical Modelling for Cancer Chronotherapeutics: Cell Population Dynamics and Treatment Optimization. In: d'Onofrio, A., Gandolfi, A. (eds) Mathematical Oncology 2013. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0458-7_9

Download citation

Publish with us

Policies and ethics