Skip to main content
Log in

An age-and-cyclin-structured cell population model for healthy and tumoral tissues

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a nonlinear model of the dynamics of a cell population divided into proliferative and quiescent compartments. The proliferative phase represents the complete cell cycle (G 1SG 2M) of a population committed to divide at its end. The model is structured by the time spent by a cell in the proliferative phase, and by the amount of Cyclin D/(CDK4 or 6) complexes. Cells can transit from one compartment to the other, following transition rules which differ according to the tissue state: healthy or tumoral. The asymptotic behaviour of solutions of the nonlinear model is analysed in two cases, exhibiting tissue homeostasis or tumour exponential growth. The model is simulated and its analytic predictions are confirmed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimy, M., Crauste, F., Pujo-Menjouet, L.: On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete Contin. Dyn. Syst. 12(3), 501–502 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the Cell. Garland, New York (1994)

    Google Scholar 

  3. Arino, O.: A survey of structured cell population dynamics. Acta Biotheor. 43(1–2), 3–25 (1995)

    Article  Google Scholar 

  4. Arino, O., Sanchez, E., Webb, G.F.: Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J. Math. Anal. Appl. 215(2), 499–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagowski, C.P., Besser, J., Frey, C.R., Ferrell, J.E.: The JNK cascade as a biochemical switch in mammalian cells: ultrasensitive and all-or-none responses. Curr. Biol. 13(4), 315–320 (2003)

    Article  Google Scholar 

  6. Blagosklonny, M.V., Pardee, A.B.: The restriction point of the cell cycle. Cell Cycle 1(2), 103–10 (2002)

    Google Scholar 

  7. Bekkal Brikci, F., Bekkal Brikci, F.: Modélisation du cycle cellulaire et couplage avec la dynamique de population cellulaire. PhD Thesis (in French), Université Pierre-et-Marie-Curie (Paris 6), 2005

  8. Bekkal Brikci, F., Clairambault, J., Perthame, B.: Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Model. (2007) (in press)

  9. Brú, A., Albertos, S., Subiza, J.L., Gareia-Asenjo, J.L., Brú, I.: The universal dynamics of tumor growth. Biophys. J. 85(5), 2948–2961 (2003)

    Article  Google Scholar 

  10. Carrillo, J.A., Cuadrado, S., Perthame, B.: Adaptive dynamics via Hamilton-Jacobi approach and entropy methods for a juvenile-adult model. Math. Biosci. 205(1), 137–161 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clairambault, J., Michel, P., Perthame, B.: Circadian rhythm and tumour growth. C. R. Acad. Sci. (Paris), Mathématique 342(1), 17–22 (2006)

    MathSciNet  Google Scholar 

  12. Cooper, S.: On the Proposal of a G0 phase and the restriction point. FASEB J. 12(3), 367–373 (1998)

    Google Scholar 

  13. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for sciences and technology, Springer, Chap. VIII, pp. 187–199 (1990)

  14. Drasdo, D., Höhme, S.: A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol. 2(3), 133–147 (2005)

    Article  Google Scholar 

  15. Foley, C., Bernard, S., Mackey, M.C.: Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. J. Theor. Biol. 238(4), 754–763 (2006)

    Article  MathSciNet  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Gyllenberg, M., Webb, G.F.: A nonlinear structured population model of tumor growth with quiescence. J. Math. Biol. 28(6), 671–694 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gyllenberg, M., Webb, G.F.: Age–size structure in populations with quiescence. Math. Biosci. 86(1), 67–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartwell, L.H., Kastan, M.B.: Cell cycle control and cancer. Science 266(5192), 1821–1828 (1994)

    Article  Google Scholar 

  20. Hitomi, M., Stacey, D.W.: Cellular ras and cyclin D1 are required during different cell cycle phases in cycling NIH 3T3 cells. Mol. Cell. Biol. 19(7), 4623–4632 (1999)

    Google Scholar 

  21. Hitomi, M., Yang, K., Guo, Y., Frethold, J., Harwalkar, J., Stacey, D.W.: p27 Kip1 and cyclin dependent kinase 2 regulate passage through the restriction point. Cell Cycle 5(19), 2281–2289 (2006)

    Google Scholar 

  22. Kimmel, M., Darzynkiewicz, Z., Arino, O., Traganos, F.: Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. J. Theor. Biol. 110(4), 637–664 (1984)

    Article  Google Scholar 

  23. Lebowitz, J.L., Rubinow, S.I.: A theory for the age and generation time distribution of a microbial population. J. Math. Biol. 1(1), 17–36 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lynch, J., Keller, M., Guo, R.J., Yang, D., Traber, P.: Cdx1 inhibits the proliferation of human colon cancer cells by reducing cyclin D1 gene expression. Oncogene 22(41), 6395–6407 (2003)

    Article  Google Scholar 

  25. Metz, J.A.J., Diekmann, O.: The dynamics of physiologically structured populations. Lecture Notes in Biomathematics vol. 68, Springer, Heidelberg (1986)

  26. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84(9), 1235–1260 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Michel, P.: Existence of a solution to the cell division eigenproblem. Math. Mod. Meth. App. Sci. 16(7, suppl.), 1125–1153 (2006)

    Article  MATH  Google Scholar 

  28. Mischler, S., Perthame, B., Ryzhik, L.: Stability in a nonlinear population maturation model. Math. Mod. Meth. Appl. Sci. 12(12), 1751–1772 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novak, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004)

    Article  MathSciNet  Google Scholar 

  30. Obeyesekere, M., Zimmerman, S.O.: A model of cell cycle behavior dominated by kinetics of A pathway stimulated By growth factors. Bull. Math. Biol. 61(5), 917–934 (1999)

    Article  Google Scholar 

  31. Philipp-Staheli, J., Payne, S.R., Kemp, C.J.: p27Kip1: regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cancer. Res. 264(1), 148–168 (2001)

    Article  Google Scholar 

  32. Qu, Z., Weiss, J.N., MacLellan, W.R.: Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am. J. Physiol. Cell. Physiol. 284(2), C349–C364 (2003)

    Google Scholar 

  33. Ribba, B., Colin, T., Schnell, S.: A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor. Biol. Med. Model. 3, 7 (2006) Published online Feb 10

    Article  Google Scholar 

  34. Rossa, B.: Asynchronous exponential growth in a size structured cell population with quiescent compartment. In: Arino et al., O. (ed) Carcinogenesis and Cell and Tumor Growth. vol. 2, Chap. 14, pp. 183–200 (1995)

  35. Rotenberg, M.: Transport theory for growing cell populations. J. Theor. Biol. 103(2), 181–199 (1983)

    Article  MathSciNet  Google Scholar 

  36. Sangfelt, O., Erickson, S., Castro, J., Heiden, T., Gustafsson, A., Einhorn, S., Grander, D.: Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins. Oncogene 18(18), 2798–2810 (1999)

    Article  Google Scholar 

  37. Sherr, C.J.: D-type cyclins. Trends Biochem. Sci. 20(5), 187–190 (1995)

    Article  Google Scholar 

  38. Sherr, C.J.: CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 13(12), 1501–1512 (2007)

    Article  Google Scholar 

  39. Stacey, D.W.: Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Option. Cell Biol. 15(2), 158–163 (2003)

    Article  MathSciNet  Google Scholar 

  40. Stewart, E.J., Madden, R., Paul, G., Taddei, F.: Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3(2), e45 (2005)

    Article  Google Scholar 

  41. Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)

    Article  Google Scholar 

  42. Val, J., Tyson, J.: A purely deterministic model for the population dynamics of budding yeast. In: Arino, O., Axelrod, D., Kimmel, M.(eds) Advances in Mathematical Population Dynamics— Molecules, Cells and Man, World Scientific, Singapore (1997)

    Google Scholar 

  43. Webb, G.F.: Theory of nonlinear Age-dependent Population Dynamics Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (1985)

    Google Scholar 

  44. Zetterberg, A., Larsson, O.: Cell cycle progression and cell growth in mammalian cells: kinetic aspects of transition events. In: Hutchinson, C., Glover, D.M.(eds) Cell Cycle Control, pp. 206–227. Oxford University Press, Oxford (1995)

    Google Scholar 

  45. Zwijsen, R.M., Klompmaker, R., Wientjens, E.B., Kristel, P.M., van der Burg, B., Michalides, R.J.: Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit. Mol. Cell. Biol. 16(6), 2554–2560 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Clairambault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekkal Brikci, F., Clairambault, J., Ribba, B. et al. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57, 91–110 (2008). https://doi.org/10.1007/s00285-007-0147-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0147-x

Mathematics Subject Classification (2000)

Navigation