Skip to main content

Mast Cells and Immune Response in Cancer

  • Chapter
  • First Online:
Tumor-Induced Immune Suppression
  • 1448 Accesses

Abstract

Mast cells are the main promoters of allergic reactions, but they intervene in many other physiological and pathological conditions. For many decades, their involvement in tumor biology has been recognized, but a series of recent studies has greatly contributed to clarifying some important aspects regarding the specific involvement of mast cells in the tumor microenvironment. Data from human samples indicate mast cells as associated to either better or worst prognosis depending on tumor types and stages. Results obtained in mouse models have demonstrated that mast cells influence tumor progression, thanks to their ability to promote angiogenesis, modulate antitumor immune responses, and regulate tumor growth. All these properties are mediated by a huge variety of receptors and effector molecules, which make mast cells an extremely plastic and eclectic immune cell. In light of their pro-tumor role, mast cells may be targeted thanks to old drugs used to treat allergic disease, or to potent tyrosine kinase inhibitors acting on the c-Kit receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ehrlich P (1878) Beiträge zur Theorie und Praxis der histologischen Färbung. Dissertation at Leipzig University

    Google Scholar 

  2. Beaven MA (2009) Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 39(1):11–25

    Google Scholar 

  3. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079

    Google Scholar 

  4. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9(11):1215–1223. doi:10.1038/ni.f.216

    Google Scholar 

  5. Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34(2):97–115

    Google Scholar 

  6. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044. doi:10.1038/ni.2109

    Google Scholar 

  7. Ashman LK (1999) The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol 31(10):1037–1051

    Google Scholar 

  8. Pittoni P, Piconese S, Tripodo C, Colombo MP (2011) Tumor-intrinsic and -extrinsic roles of c-Kit: mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene 30(7):757–769. doi:10.1038/onc.2010.494

    Article  CAS  PubMed  Google Scholar 

  9. Galli SJ, Tsai M, Wershil BK (1993) The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142(4):965–974

    CAS  PubMed  Google Scholar 

  10. Meininger CJ, Yano H, Rottapel R, Bernstein A, Zsebo KM, Zetter BR (1992) The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79(4):958–963

    CAS  PubMed  Google Scholar 

  11. Moller C, Alfredsson J, Engstrom M, Wootz H, Xiang Z, Lennartsson J, Jonsson JI, Nilsson G (2005) Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood 106(4):1330–1336

    Article  PubMed  Google Scholar 

  12. Gilfillan AM, Rivera J (2009) The tyrosine kinase network regulating mast cell activation. Immunol Rev 228(1):149–169

    Google Scholar 

  13. Taylor AM, Galli SJ, Coleman JW (1995) Stem-cell factor, the kit ligand, induces direct degranulation of rat peritoneal mast cells in vitro and in vivo: dependence of the in vitro effect on period of culture and comparisons of stem-cell factor with other mast cell-activating agents. Immunology 86(3):427–433

    CAS  PubMed  Google Scholar 

  14. Rivera J, Gilfillan AM (2006) Molecular regulation of mast cell activation. J Allergy Clin Immunol 117(6):1214–1225 (quiz 1226). doi:10.1016/j.jaci.2006.04.015

    Google Scholar 

  15. Tsai M, Grimbaldeston M, Galli SJ (2011) Mast cells and immunoregulation/immunomodulation. Adv Exp Med Biol 716:186–211. doi:10.1007/978-1-4419-9533-9_11

    Article  CAS  PubMed  Google Scholar 

  16. Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F (2012) Novel identified receptors on mast cells. Front Immunol 3:238. doi:10.3389/fimmu.2012.00238

    Google Scholar 

  17. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev 8(6):478–486

    Google Scholar 

  18. Merluzzi S, Frossi B, Gri G, Parusso S, Tripodo C, Pucillo C (2010) Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood 115(14):2810–2817. doi:10.1182/blood-2009-10-250126

    Article  CAS  PubMed  Google Scholar 

  19. Frossi B, Gri G, Tripodo C, Pucillo C (2010) Exploring a regulatory role for mast cells: ‘MCregs’? Trends Immunol 31(3):97–102

    Google Scholar 

  20. Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8(10):1095–1104

    Google Scholar 

  21. Vitsky A, Waire J, Pawliuk R, Bond A, Matthews D, Lacasse E, Hawes ML, Nelson C, Richards S, Piepenhagen PA, Garman RD, Andrews L, Thurberg BL, Lonning S, Ledbetter S, Ruzek MC (2009) Homeostatic role of transforming growth factor-beta in the oral cavity and esophagus of mice and its expression by mast cells in these tissues. Am J Pathol 174(6):2137–2149. doi:10.2353/ajpath.2009.080723

    Article  CAS  PubMed  Google Scholar 

  22. Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, Viola A, Odom S, Rivera J, Colombo MP, Pucillo CE (2008) CD4 + CD25 + regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29(5):771–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114(13):2639–2648

    Article  CAS  PubMed  Google Scholar 

  24. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J, Strom TB, Zheng XX, Noelle RJ (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442(7106):997–1002

    Article  CAS  PubMed  Google Scholar 

  25. de Vries VC, Elgueta R, Lee DM, Noelle RJ (2010) Mast cell protease 6 is required for allograft tolerance. Transplant Proc 42(7):2759–2762. doi:10.1016/j.transproceed.2010.05.168

    Google Scholar 

  26. de Vries VC, Pino-Lagos K, Nowak EC, Bennett KA, Oliva C, Noelle RJ (2011) Mast cells condition dendritic cells to mediate allograft tolerance. Immunity 35(4):550–561. doi:10.1016/j.immuni.2011.09.012

    Article  PubMed Central  PubMed  Google Scholar 

  27. de Vries VC, Wasiuk A, Bennett KA, Benson MJ, Elgueta R, Waldschmidt TJ, Noelle RJ (2009) Mast cell degranulation breaks peripheral tolerance. Am J Transplant (official journal of the American Society of Transplantation and the American Society of Transplant Surgeons) 9(10):2270–2280. doi:10.1111/j.1600-6143.2009.02755.x

    Google Scholar 

  28. Saleem SJ, Martin RK, Morales JK, Sturgill JL, Gibb DR, Graham L, Bear HD, Manjili MH, Ryan JJ, Conrad DH (2012) Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol 189(2):511–515. doi:10.4049/jimmunol.1200647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C, Enblad G (2002) Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. Br J Haematol 119(1):122–124

    Article  PubMed  Google Scholar 

  30. Rabenhorst A, Schlaak M, Heukamp LC, Forster A, Theurich S, von Bergwelt-Baildon M, Buttner R, Kurschat P, Mauch C, Roers A, Hartmann K (2012) Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood 120(10):2042–2054. doi:10.1182/blood-2012-03-415638

    Article  CAS  PubMed  Google Scholar 

  31. Hedstrom G, Berglund M, Molin D, Fischer M, Nilsson G, Thunberg U, Book M, Sundstrom C, Rosenquist R, Roos G, Erlanson M, Amini RM, Enblad G (2007) Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. Br J Haematol 138(1):68–71. doi:10.1111/j.1365-2141.2007.06612.x

    Article  PubMed  Google Scholar 

  32. Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, Sirigu P (2003) Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 33(5):420–425

    Google Scholar 

  33. Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, Rossi FW, Basolo F, Ugolini C, de Paulis A, Santoro M, Marone G (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29(47):6203–6215. doi:10.1038/onc.2010.348

    Article  CAS  PubMed  Google Scholar 

  34. Rajput AB, Turbin DA, Cheang MC, Voduc DK, Leung S, Gelmon KA, Gilks CB, Huntsman DG (2008) Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases. Breast Cancer Res Treat 107(2):249–257. doi:10.1007/s10549-007-9546-3

    Article  PubMed Central  PubMed  Google Scholar 

  35. Welsh TJ, Green RH, Richardson D, Waller DA, O’Byrne KJ, Bradding P (2005) Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol 23(35):8959–8967

    Article  PubMed  Google Scholar 

  36. Nonomura N, Takayama H, Nishimura K, Oka D, Nakai Y, Shiba M, Tsujimura A, Nakayama M, Aozasa K, Okuyama A (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97(7):952–956

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Fleischmann A, Schlomm T, Kollermann J, Sekulic N, Huland H, Mirlacher M, Sauter G, Simon R, Erbersdobler A (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981

    Article  CAS  PubMed  Google Scholar 

  38. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikstrom P, Bergh A (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041

    Article  CAS  PubMed  Google Scholar 

  39. Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52(2):447–452

    CAS  PubMed  Google Scholar 

  40. Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P, Besmer P (1990) Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J 9(6):1805–1813

    Google Scholar 

  41. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848

    Article  CAS  PubMed  Google Scholar 

  42. Lyon MF, Glenister PH (1982) A new allele sash (Wsh) at the W-locus and a spontaneous recessive lethal in mice. Genet Res 39(3):315–322

    Google Scholar 

  43. Berrozpe G, Timokhina I, Yukl S, Tajima Y, Ono M, Zelenetz AD, Besmer P (1999) The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between -23 and -154 kb upstream of Kit. Blood 94(8):2658–2666

    CAS  PubMed  Google Scholar 

  44. Piconese S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Pedotti R (2011) Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit(W-sh/W-sh) mice. Lab Invest 91(4):627–41. doi: 10.1038/labinvest.2011.3

    Google Scholar 

  45. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13(10):1211–1218

    Google Scholar 

  46. Pittoni P, Tripodo C, Piconese S, Mauri G, Parenza M, Rigoni A, Sangaletti S, Colombo MP (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71(18):5987–5997. doi:10.1158/0008-5472.CAN-11-1637

    Google Scholar 

  47. Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, Gurish M, Mathis D, Benoist C, Lee DM (2008) Genetic inversion in mast cell-deficient (W(sh)) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol 173(6):1693–1701

    Article  CAS  PubMed  Google Scholar 

  48. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A, Peschke K, Vohringer D, Waskow C, Krieg T, Muller W, Waisman A, Hartmann K, Gunzer M, Roers A (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34(6):973–984. doi:10.1016/j.immuni.2011.03.028

    Article  CAS  PubMed  Google Scholar 

  49. Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, Kim B, Matsuoka S, Watanabe T, Nakae S, Miyachi Y, Kabashima K (2011) Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PloS one 6(9):e25538. doi:10.1371/journal.pone.0025538

    Google Scholar 

  50. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Moller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35(5):832–844. doi:10.1016/j.immuni.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  51. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J, Yu M, Tsai M, Piliponsky AM, Galli SJ (2011) Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood 118(26):6930–6938. doi:10.1182/blood-2011-03-343962

    Article  CAS  PubMed  Google Scholar 

  52. Rodewald HR, Feyerabend TB (2012) Widespread immunological functions of mast cells: fact or fiction? Immunity 37(1):13–24. doi:10.1016/j.immuni.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  53. Reber LL, Marichal T, Galli SJ (2012) New models for analyzing mast cell functions in vivo. Trends Immunol 33(12):613–625. doi:10.1016/j.it.2012.09.008

    Google Scholar 

  54. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279

    Article  CAS  PubMed  Google Scholar 

  55. Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269(1):1–6

    Google Scholar 

  56. Theoharides TC (2008) Mast cells and pancreatic cancer. N Engl J Med 358(17):1860–1861

    Google Scholar 

  57. Dalton DK, Noelle RJ (2012) The roles of mast cells in anticancer immunity. Cancer Immunol Immunother 61(9):1511–1520. doi:10.1007/s00262-012-1246-0

    Google Scholar 

  58. Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev 11(10):702–711. doi:10.1038/nri3064

    Google Scholar 

  59. Ribatti D, Crivellato E (2011) Mast cells and tumors: from biology to clinic. Springer. doi:10.1007/978-94-007-1469-4

    Google Scholar 

  60. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Google Scholar 

  61. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67(23):11438–11446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13(11):1382–1397

    Google Scholar 

  63. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103 (3):481–490. doi:S0092-8674(00)00139-2 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114(9):1317–1325

    Google Scholar 

  66. Zudaire E, Martinez A, Garayoa M, Pio R, Kaur G, Woolhiser MR, Metcalfe DD, Hook WA, Siraganian RP, Guise TA, Chirgwin JM, Cuttitta F (2006) Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol 168(1):280–291

    Article  CAS  PubMed  Google Scholar 

  67. Samoszuk M, Corwin MA (2003) Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Cancer 107(1):159–163. doi:10.1002/ijc.11340

    Google Scholar 

  68. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  69. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118(2):560–570. doi:10.1172/JCI32453

    Google Scholar 

  70. Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205. doi:10.1007/s00281-009-0165-4

    Google Scholar 

  71. Adams WJ, Morris DL (1994) Short-course cimetidine and survival with colorectal cancer. Lancet 344(8939–8940):1768–1769

    Article  CAS  PubMed  Google Scholar 

  72. Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104(50):19977–19982

    Google Scholar 

  73. Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, Salabat MR, Heiferman M, Grippo PJ, Munshi HG, Gounaris E, Bentrem DJ (2011) Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res 71(5):1627–1636. doi:10.1158/0008-5472.CAN-10-1923

    Google Scholar 

  74. Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB, Beckhove P, Gounari F, Khazaie K (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69(13):5490–5497

    Google Scholar 

  75. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M, Weitz J, Koch M, Halverson AL, Bentrem DJ, Khazaie K (2010) In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc Natl Acad Sci USA 107(14):6430–6435

    Google Scholar 

  76. Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PloS one 5(1):e8922

    Google Scholar 

  77. Tripodo C, Gri G, Piccaluga PP, Frossi B, Guarnotta C, Piconese S, Franco G, Vetri V, Pucillo CE, Florena AM, Colombo MP, Pileri SA (2010) Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma. Am J Pathol 177(2):792–802

    Article  CAS  PubMed  Google Scholar 

  78. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M, Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW (2008) Nf1-dependent tumors require a microenvironment containing Nf1 +/− and c-kit-dependent bone marrow. Cell 135(3):437–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S, Korets L, Lam J, Tawfik D, DeNardo DG, Naldini L, de Visser KE, De Palma M, Coussens LM (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer cell 17(2):121–134

    Google Scholar 

  80. Redegeld FA, van der Heijden MW, Kool M, Heijdra BM, Garssen J, Kraneveld AD, Van Loveren H, Roholl P, Saito T, Verbeek JS, Claassens J, Koster AS, Nijkamp FP (2002) Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nat Med 8(7):694–701. doi:10.1038/nm722

    Google Scholar 

  81. Morabito F, De Filippi R, Laurenti L, Zirlik K, Recchia AG, Gentile M, Morelli E, Vigna E, Gigliotti V, Calemma R, Amoroso B, Neri A, Cutrona G, Ferrarini M, Molica S, Del Poeta G, Tripodo C, Pinto A (2011) The cumulative amount of serum-free light chain is a strong prognosticator in chronic lymphocytic leukemia. Blood 118(24):6353–6361. doi:10.1182/blood-2011-04-345587

    Article  CAS  PubMed  Google Scholar 

  82. Wasiuk A, Dalton DK, Schpero WL, Stan RV, Conejo-Garcia JR, Noelle RJ (2012) Mast cells impair the development of protective anti-tumor immunity. Cancer Immunol Immunother 61(12):2273–2282. doi:10.1007/s00262-012-1276-7

    Google Scholar 

  83. Nowak EC, de Vries VC, Wasiuk A, Ahonen C, Bennett KA, Le Mercier I, Ha DG, Noelle RJ (2012) Tryptophan hydroxylase-1 regulates immune tolerance and inflammation. J Exp Med 209(11):2127–2135. doi:10.1084/jem.20120408

    Google Scholar 

  84. Turner MC, Chen Y, Krewski D, Ghadirian P (2006) An overview of the association between allergy and cancer. Int J Cancer. 118(12):3124–3132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Pittoni P, Colombo MP (2012) The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res 72(4):831–835. doi:10.1158/0008-5472.CAN-11-3110

    Google Scholar 

  86. Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63(10):1255–1266. doi:10.1111/j.1398-9995.2008.01768.x

    Google Scholar 

  87. Reali E, Greiner JW, Corti A, Gould HJ, Bottazzoli F, Paganelli G, Schlom J, Siccardi AG (2001) IgEs targeted on tumor cells: therapeutic activity and potential in the design of tumor vaccines. Cancer Res 61(14):5517–5522

    Google Scholar 

  88. Vangelista L, Soprana E, Cesco-Gaspere M, Mandiola P, Di Lullo G, Fucci RN, Codazzi F, Palini A, Paganelli G, Burrone OR, Siccardi AG (2005) Membrane IgE binds and activates Fc epsilon RI in an antigen-independent manner. J Immunol 174(9):5602–5611

    CAS  PubMed  Google Scholar 

  89. Oka T, Kalesnikoff J, Starkl P, Tsai M, Galli SJ (2012) Evidence questioning cromolyn’s effectiveness and selectivity as a ‘mast cell stabilizer’ in mice. Lab Invest (a journal of technical methods and pathology) 92(10):1472–1482. doi:10.1038/labinvest.2012.116

    Google Scholar 

  90. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario P. Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Colombo, M., Pittoni, P. (2014). Mast Cells and Immune Response in Cancer. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_3

Download citation

Publish with us

Policies and ethics