Skip to main content

Hepatotoxicity Caused by Dietary Secondary Products Originating from Lipid Peroxidation

  • Chapter
Nutritional and Toxicological Consequences of Food Processing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 289))

Abstract

Hepatic dysfunction caused by oxidative stress when secondary peroxidation products were administered orally was investigated in rat. In serum at 24 hr after the administration of secondary products, the contents of lipid peroxides reached a maximum, the level of tocopherol reached a minimum, and the transaminase activities were elevated. In the liver, the lipid peroxide contents were kept high between 6 and 24 hr and tocopherol level was kept low between 15 and 48 hr after the does. Therefore, the hepatic oxidative stress was most severe around 15 hr after the dose. Dysfunction in the liver having oxidative stress was then made clear. One was a disturbance in synthetic system of glucose 6-phosphate. The decreases in activities of phosphoglucomutase and glucokinase reduced a level of glucose 6-phosphate, which suppressed the supply of NADPH in pentose cycle, while the NADPH was consuming well for detoxification of endogenous lipid peroxides. Another was specific inactivations of mitochondrial succinate dehydrogenase and aldehyde dehydrogenase. A third was the depletion of CoASH, which induced the decreases in activities of citrate cycle and lipogenesis. The other was a formation of lipofuscin. Even after the liver was recovering from the oxidative stress, the liver was getting hypertrophy and lipofuscin was accumulating. To make the cause of hepatic dysfunction clear, it was examined whether the incorporated secondary products in the liver could directly attack the enoymes or not. A reasonable amount of secondary products present in the liver was estimated, and then the amount of secondary products was added in hepatic subcellular organelles in vitro. It was found that mitochondrial NAD-dependent aldehyde dehydrogenase, glucokinase, and CoASH were directly attacked and inactivated by the incorporated secondary products in the liver. Thus, a part of dietary secondary products was incorporated into liver, and was not detoxified, but injured the enoymes and CoASH. Then it resulted in lipofuscin formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashida, H., Kanazawa, K., Minamoto, S., Danno, G., and Natake, M. (1987a). Effect of orally administered secondary autoxidation products of linoleic add on carbohydrate metabolism in rat liver. Arch. Bioohem. Biophye., 259, 114–123.

    Article  CAS  Google Scholar 

  • Ashida, H., Kanazawa, K., and Natake, M. (1987b). Decrease of the NADPH level in rat liver on oral administration of secondary autoxidation products of linoleic acid. Agric.Biol. Chem., 51, 2951–2957.

    Article  CAS  Google Scholar 

  • Ashida, H., Kanazawa, K., and Natake, M. (1988). Comparison of the effects of orally administered linoleic acid, and its hydroperoxides and secondary autoxidation products on hepatic lipid metabolism in rats. Agrio. Biol. Chem., 52, 2007–2014.

    Article  CAS  Google Scholar 

  • Benedetti, A., Comporti, M., and Esterbauer, H. (1980). Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta, 620, 281–296.

    Article  CAS  Google Scholar 

  • Bergan, J.G. and Draper, H.H. (1970). Absorption and metabolism of 1-14C-methyl linoleate hydroperoxide. Lipide, 5, 976–982.

    Article  CAS  Google Scholar 

  • Bergmeyer, H.U., Grassi, M., and Walter, H.-E. (1983). Hexokinase; Isocitrate dehydrogenase; and Phosphoglucomutase. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassl, eds., VCH Verlagsgesellschaft, Weinheim, Vol. II, pp. 222-223; pp. 230-231; and pp. 277-278, respectively.

    Google Scholar 

  • Black, S. (1955). Potassium-activated yeast aldehyde dehydrogenase. Methode Ensymol., I, 508–511.

    Article  Google Scholar 

  • Cadenas, E., Müller, A., Brigelius, R., Esterbauer, H., and Sies, H. (1983). Effects of 4-hydroxynonenal on isolated hepatocytes. Biochem. J., 214, 479–487.

    CAS  Google Scholar 

  • Decker, K. (1985). Acetyl Coenoyme A. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VII, pp. 186–193.

    Google Scholar 

  • Esterbauer, H., Zollner, H., and Scholz, N. (1975). Reaction of glutathione with conjugated carbonyls. Z. Naturforsch., 30, 466–473.

    CAS  Google Scholar 

  • Esterbauer, H., Ertl, A., and Scholz, N. (1976). The reaction of cysteine with α,β-unsaturated aldehydes. Tetrahedron, 32, 285–289.

    Article  CAS  Google Scholar 

  • Flatt, J.P. and Ball, E.G. (1964). Studies on the metabolism of adipose tissue. J. Biol. Chem., 239, 675–685.

    CAS  Google Scholar 

  • Flohe, L. (1982). Role of GSH peroxidase in lipid peroxide metabolism. In: “Lipid Peroxides in Biology and Medicine”, K. Yagi ed., Academic Press, New York, pp. 149–159.

    Chapter  Google Scholar 

  • Garland, P.B. (1985). Coenoyme A Derivatives of Long-chain Fatty Acids. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VII, pp. 206–211.

    Google Scholar 

  • Glavind, J. and Tryding, N. (1960). On the digestion and absorption of lipoperoxides. Acta Phyeiol. Scand., 49, 97–102.

    Article  CAS  Google Scholar 

  • Glock, G.E. and McLean, P. (1953). Further studies on the properties and assay of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochem. J., 55, 400–408.

    CAS  Google Scholar 

  • Hissin, P. J. and Hilf, R. (1976). A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 74, 214–226.

    Article  CAS  Google Scholar 

  • Holman, R.T. and Greenberg, S.I. (1958). A note on the toxicities of methyl oleate peroxide and ethyl linoleate peroxide. J. Am. Oil Chem. Soc., 35, 707.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Mori, T., and Matsushita, S. (1973). Oxygen absorption at the process of the degradation of linoleic acid hydroperoxides. J. Nutr. Sic. Vitaminol., 19, 263–275.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Danno, G., and Natake, M. (1975). Lysozyme damage caused by secondary degradation products during the autoxidation process of linoleic acids. J. Nutr. Sci. Vitaminol., 21, 373–382.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Danno, G., and Natake, M. (1983). Some analytical observations of autoxidation products of linoleic acid and their thiobarbituric acid reactive substances. Agric.Biol. Chem., 47, 2035–2043.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Minamoto, S., Ashida, H., Yamada, K., Danno, G., and Natake, M. (1985a). Determination of lipid peroxide contents in rat liver by a new coloration test. Agric.Biol. Chem., 49, 2799–2801.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Kanazawa, E., and Natake, M. (1985b). Uptake of secondary autoxidation products of linoleic acid by the rat. Lipids, 20, 412–419.

    Article  CAS  Google Scholar 

  • Kanazawa, K. and Natake, M. (1986a). Identification of 9-oxononanoic acid and hexanal in liver of rat orally administered with secondary autoxidation products of linoleic acid. Agrio. Biol. Chem., 50, 115–120.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Ashida, H., Minamoto, S., and Natake, M. (1986b). The effect of orally administered secondary autoxidation products of linoleic acid on the activity of detoxifying enoymes in the rat liver. Biochim. Biophye. Acta, 879, 36–43.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Ashida, H., and Natake, M. (1987). Autoxidizing process interaction of linoleic acid with casein. J. Food Sci., 52, 475–478.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Ashida, H., Minamoto, H., Danno, G., and Natake, M. (1988). The effects of orally administered linoleic acid and its autoxidation products on intestinal mucosa in rat. J. Nutr. Sci. Vitaminol., 34, 363–373.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Inoue, N., Ashida, H., Mizuno, M., Natake, M. (1989a). What do thiobarbituric acid and hemoglobin-methylene blue tests evaluate in the endogenous lipid peroxidation of rat liver? J. Clin, Biochem. Nutr., 7, 69–79.

    Article  CAS  Google Scholar 

  • Kanazawa, K., Ashida, H., Inoue, N., Natake, M. (1989b). Succinate dehydrogenase and synthetic pathways of glucose 6-phosphate are also the markers of the toxicity of orally administered secondary autoxidation products of linoleic acid in rat liver. J. Nutr. Sci. Vitaminol., 35, 25–37.

    Article  CAS  Google Scholar 

  • Katz, J., Landau, B.R., and Bartsch, G.E. (1966). The pentose cycle, triose phosphate isomerization, and lipogenesis in rat adipose tissue. J. Biol. Chem., 241, 727–740.

    CAS  Google Scholar 

  • Klingenberg, M. (1985). Nicotinamide-adenine dinucleotides and dinucleotide phosphates (NAD, NADP, NADH, NADPH). In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VII, pp. 251–271.

    Google Scholar 

  • Kunst, A., Draeger, B., and Ziegenhorn, J. (1984). D-Glucose. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VI, pp. 163–172.

    Google Scholar 

  • Little, C., Olinescu, R., Reid, K.G., and O’Brien, P.J. (1970). Properties and regulation of glutathione peroxidase. J. Biol. Chem., 245, 3632–3636.

    CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265–275.

    CAS  Google Scholar 

  • Markwell, M. A. K., McGroarty, E. J., Bieber, L. L., and Tolbert, N. E. (1973). The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. J. Biol. Chem., 248, 3426–3432.

    CAS  Google Scholar 

  • Massey, T. and Deal, Jr., W.C. (1975). Phosphofructokinases from porcine liver and kidney and from other mammalian tissues. Methods Enzymol., XLII, 99–110.

    Article  Google Scholar 

  • Masugi, F. and Nakamura, T. (1977). Measurement of thiobarbituric acid value in liver homogenate solubilized with sodium dodecylsulphate and variation of the values affected by vitamin E and drugs. Vitamin, 51, 21–29.

    CAS  Google Scholar 

  • Matoba, T., Yonezawa, D., Nair, B.M., and Kito, M. (1984). Damage of amino acid residues of proteins after reaction with oxidizing lipids: estimation by proteolytic enoymes. J. Food Sci., 49, 1082–1084.

    Article  CAS  Google Scholar 

  • Michal, G. (1984). D-Glucose 1-Phosphate; and D-Glucose 6-Phosphate and D-Fructose 6-Phosphate. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VI, pp. 185–198.

    Google Scholar 

  • Michal, G. and Bergmeyer, H.U. (1985). Coenoyme A and Derivatives. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. VII, pp. 156–165.

    Google Scholar 

  • Minamoto, S., Kanazawa, K., Ashida, H., Danno, G., and Natake, M. (1985). The induction of lipid peroxidation in rat liver by oral intake of 9-oxononanoic acid contained in autoxidized linoleic acid. Agrio. Biol. Chem., 49, 2747–2751.

    Article  CAS  Google Scholar 

  • Minamoto, S., Kanazawa, K., Ashida, H., and Natake, M. (1988). Effect of orally administered 9-oxononanoic acid on lipogenesis in rat liver. Biochim. Biophys. kcta., 958, 199–204.

    Article  CAS  Google Scholar 

  • Mitchell, D.Y. and Petersen, D.R. (1989). Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch. Biochem. Biophye., 269, 11–17.

    Article  CAS  Google Scholar 

  • Muto, Y. and Gibson, D.H. (1970). Selective dampening of lipogenic enoymes of liver by exogenous polyunsaturated fatty acids. Biochem. Biophys. Res. Commun., 38, 9–15.

    Article  CAS  Google Scholar 

  • Nakanishi, S. and Numa, S. (1970). Purification of rat liver acetyl coenoyme A carboxylase and immunochemical studies on its synthesis and degradation. Eur. J. Biochem., 16, 161–173.

    Article  CAS  Google Scholar 

  • Neff, W.E., Frankel, E.N., Selke, E., and Weisleder, D. (1983). Photosensitized oxidation of methyl linoleate monohydroperoxides: Hydroperoxy cyclic peroxides, dihydroperoxides, keto esters and volatile thermal decomposition products. Lipide, 18, 868–876.

    Article  CAS  Google Scholar 

  • Oarada, M., Miyazawa, T., and Kaneda, T. (1986). Distribution of 14C after oral administration of [U-14C]labeled methyl linoleate hydroperoxides and their secondary oxidation products in rats. Lipide, 21, 150–154.

    Article  CAS  Google Scholar 

  • Ochoa, S. (1955). “Malic” · Enzyme. Methods Enzymol., I, 739–753.

    Article  Google Scholar 

  • Rej, R. and Harder, M. (1983). Aspartate aminotransferase. In: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, J. Bergmeyer, and M. Grassi, eds., VCH Verlagsgesellschaft, Weinheim, Vol. III, pp. 416–424; and Alanine aminotransferase., pp. 444-450.

    Google Scholar 

  • Roubal, W.T. and Tappel, A.L. (1966). Damage to proteins, enoymes, and amino acids by peroxidizing Hpids. Arch. Biochem. Biophye., 113, 5–8.

    Article  CAS  Google Scholar 

  • Schauenstein, E. (1967). Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J. Lipid Ree., 8, 417–428.

    CAS  Google Scholar 

  • Shimasaki, H., Ueta, M., and Privett, O.S. (1980). Isolation and analysis of age-related fluorescent substances in rat testes. Lipide., 15, 236–241.

    Article  CAS  Google Scholar 

  • Sure, B. (1924). Dietary requirements for reproduction. J. Biol. Chem., 58, 681–704.

    CAS  Google Scholar 

  • Swanson, M. A. (1955). Glucose-6-phosphatase from liver. Methode Emymol., II, 541–543.

    Google Scholar 

  • Taylor, S. L., Lamden, M. P., and Tappel, A. L. (1976). Sensitive fluorometric method for tissue tocopherol analysis. Lipide, 11, 530–538.

    Article  CAS  Google Scholar 

  • Terao, J., Ogawa, T., and Matsushita, S. (1975). Degradation process of autoxidized methyl linoleate. Agric.Biol. Chem., 39, 397–402.

    Article  CAS  Google Scholar 

  • Terao, J., Asano., Matsushita, S. (1984). High-performance liquid Chromatographic determination of phospholipid peroxidation products of rat liver after carbon tetrachloride administration. Arch. Biochem. Biophye., 235, 326–333.

    Article  CAS  Google Scholar 

  • Veeger, C., DerVartanian, D.V., and Zeylemaker, W.P. (1969). Succinate dehydrogenase. Methode Enzymol., XIII, 81–90.

    Article  Google Scholar 

  • Williamson, D. H., Lund, P., and Krebs, H. A. (1967). The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J., 103, 514–527.

    CAS  Google Scholar 

  • Wills, E.D. (1971). Effects of lipid peroxidation on membrane-bound enoymes of the endoplasmic reticulum. Biochem. J., 123, 983–991.

    CAS  Google Scholar 

  • Yoshida, H. and Alexander, J.C. (1983). Enzymatic hydrolysis in vitro of thermally oxidized sunflower oil. Lipide, 18, 611–616.

    Article  CAS  Google Scholar 

  • Zanetti, G. (1979). Rabbit liver glutathione reductase. Purification and properties. Arch. Biochem. Biophye., 198, 241–246.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanazawa, K. (1991). Hepatotoxicity Caused by Dietary Secondary Products Originating from Lipid Peroxidation. In: Friedman, M. (eds) Nutritional and Toxicological Consequences of Food Processing. Advances in Experimental Medicine and Biology, vol 289. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2626-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2626-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2628-9

  • Online ISBN: 978-1-4899-2626-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics