Skip to main content

Molecular Precursors to Thin Films

  • Chapter
Inorganometallic Chemistry

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

The chemistry of the inorganic metal-nonmetal bond is central to modern materials science. The modern electronics and computer hardware industries are based on inorganic materials such as compound semiconductors, which are embodiments of the metal-nonmetal bond. In view of the importance of such compounds, their synthesis offers important challenges and opportunities for reaction chemistry. This type of synthesis chemistry has a number of unique features, perhaps the most apparent of which is that the macroscopic form of the final product is as important as its microscopic chemical constitution. Depending on the ultimate use of the material it is required in forms as varied as large (dimensions of inches to feet) single crystals, powders (both polycrystalline and amorphous), monoliths, nanoscale materials, and thin films. Since so many different products are desired, a variety of synthesis techniques are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stroeve, P., Ed. “Integrated Circuits: Chemical and Physical Processing”; ACS Symp. Ser. 290, Am. Chem. Soc.: Washington, 1985.

    Google Scholar 

  2. Seeger, K. “Semiconductor Physics: An Introduction”; Springen Berlin, 1985; and, for example

    Google Scholar 

  3. Kamimura, H.; Toyozawa, Y., Eds. “Recent Topics in Semiconductor Physics”; World Scientific Publishing: Singapore, 1983.

    Google Scholar 

  4. Murthy, T.U.M.S.; Miyamoto, N.; Shimbo, M.; Nishizawa, J. J. Cryst. Growth 1976, 33, 1.

    Article  ADS  Google Scholar 

  5. West, A. R. “Solid State Chemistry and Its Applications”; Wiley and Sons: Chichester, 1986

    Google Scholar 

  6. Rao, C. N. R.; Gopalakrishnan, J. “New Directions in Solid State Chemistry”; Cambridge University Press: Cambridge, 1986

    Google Scholar 

  7. Schäfer, H. “Chemical Transport Reactions”; Academic Press: New York, 1964

    Google Scholar 

  8. Stringfellow, G. B. “Organometallic Vapor Phase Epitaxy: Theory and Practice”; Academic Press: San Diego, 1989.

    Google Scholar 

  9. Wells, A. F. “Structural Inorganic Chemistry”; Clarendon Press: Oxford, 1975

    Google Scholar 

  10. Lu-dowise, M. J. J. Appl. Phys. 1985, 58, R31

    Article  ADS  Google Scholar 

  11. Bryant, W. A. J. Mater. Sci. 1911, 12, 1285

    Article  ADS  Google Scholar 

  12. Tiefjen, J. J. Annu. Rev. Mater. Sci. 1973

    Google Scholar 

  13. Green, M. L.; Levy, R. A. J. Met. 1985, 63

    Google Scholar 

  14. Jasinski, J. M.; Meyerson, B. S.; Scott, B. A. Annu. Rev. Phys. Chem. 1987, 38, 109

    Article  ADS  Google Scholar 

  15. Klabunde, K. J., Ed. “Thin Films from Free Atoms and Particles”; Academic Press: Orlando, 1985

    Google Scholar 

  16. Bonfils, J.-F.; Irvine, S. J. C.; Mullin, J. B., Eds. “Proceedings of the International Conference on Metalorganic Vapor Phase Epitaxy”; J. Cryst. Growth 1981, 55

    Google Scholar 

  17. Stringfellow, G. B., Ed. “Proceedings of the Third International Conference on Metalorganic Vapor Phase Epitaxy”; J. Cryst. Growth 1986, 77

    Google Scholar 

  18. Wanatabe, N.; Nakanisi, T.; Dapkus, P. D., Eds. “Proceedings of the Fourth International Conference on Metalorganic Vapor Phase Epitaxy”; J. Cryst. Growth 1988, 93

    Google Scholar 

  19. Cole-Hamilton, D. J.; Williams, J. O., Eds. “Mechanisms of Reactions of Organometallic Compounds with Surfaces”; Plenum Press: New York, 1989.

    Google Scholar 

  20. Henglein, A. Chem. Rev. 1989, 89, 1861

    Article  Google Scholar 

  21. Steigerwald, M.L.; Brus, L.E. Annu. Rev. Mater. Sci. 1989, 19, 471.

    Article  ADS  Google Scholar 

  22. Ref. 5a, p. 617.

    Google Scholar 

  23. Ref. 4a, Chapter 2.

    Google Scholar 

  24. Eichorst, D. J.; Payne, D. A.; Wilson, S. R.; Howard, K. E. Inorg. Chem. 1990, 29, 1458 and references cited therein

    Article  Google Scholar 

  25. Huppertz, H.; Engl, W. L. IEEE Trans. Electron Devices 1979, ED-26, 658 and references cited therein

    Article  Google Scholar 

  26. Jefiries, P.M.; Girolami, G.S. Chem. Mater. 1989, 1, 8.

    Article  Google Scholar 

  27. Girolami, G. S.; Kaloyeros, A. E.; Allocca, C. M. J. Am. Chem. Soc. 1987, 109, 1579

    Article  Google Scholar 

  28. Rutherford, N. M.; Larson, C. E.; Jackson, R. L. Mater. Res. Soc. Symp. Proc. 1987, 131, 439

    Article  Google Scholar 

  29. Brown, G.M.; Maya, L. Inorg. Chem. 1989, 28, 2007.

    Article  Google Scholar 

  30. Wu, H.-J.; Interrante, L. V. Chem. Mater. 1989, 1, 564

    Article  Google Scholar 

  31. Boyd, D._G; Haasch, R.T.; Mantell, D.R.; Schulze, R.K.; Evans, J.F.; Gladfelter, W.L. Chem. Mater. 1989, 1, 119.

    Article  Google Scholar 

  32. Seyferth, D.; Rees, W. S., Jr.; Haggerty, J. S.; Lightfoot, A. Chem. Mater. 1989, 45

    Google Scholar 

  33. Beck, J. S.; Albani, C. R.; McGhie, A. R.; Rothman, J. B.; Sneddon, L. G. Chem. Mater. 1989, 1, 433

    Article  Google Scholar 

  34. Fehlner, T. P.; Amini, M. M.; Zeller, M. V.; Stickle, W. F.; Pringle, O. A.; Long, G. J.; Fehlner, F. P. Mater. Res. Soc. Symp. Proc. 1989, 131, 413

    Article  Google Scholar 

  35. Jensen, J.A.; Gozum, J.E.; Pollina, D.M.; Girolami, G.S. J. Am. Chem. Soc. 1988, 110, 1643.

    Article  Google Scholar 

  36. Kern, W.; Schnäble, G. L. IEEE Trans. Electron Devices 1979, ED-26, 647.

    Article  Google Scholar 

  37. Panish, M.B.; Temkin, H. Annu. Rev. Mater. Sci. 1989, 19, 209.

    Article  ADS  Google Scholar 

  38. Irvine, S. J. G; Mullin, J. B.; Giess, J.; Gough, J. S.; Royle, A. J. Cryst. Growth 1988, 93, 732

    Article  ADS  Google Scholar 

  39. Irvine, S.J.G; Mullin, J.B.; Hill, H.; Brown, G.T.; Barnett, S.J. J. Cryst. Growth 1988, 86, 188.

    Article  Google Scholar 

  40. Ref. 4a, Chapter 7.

    Google Scholar 

  41. Ref. 4d, Chapter 5.

    Google Scholar 

  42. Manasevit, H. M. Appl. Phys. Lett. 1969, 116, 1725

    Google Scholar 

  43. Manasevit, H.M.; Simpson, W.I. J. Electrochem. Soc. 1968, 12, 156.

    Google Scholar 

  44. Cho, A. Y. In Ref. 1, Chapter 8.

    Google Scholar 

  45. Tsang, W.T. Appl. Phys. Lett. 1984, 45, 1234.

    Article  ADS  Google Scholar 

  46. Robertson, A., Jr.; Chiu, T.H.; Tsang, W.T.; Cunningham, J.E. J. Appl. Phys. 1988, 64, 877.

    Article  ADS  Google Scholar 

  47. The Cu/S system is an interesting example. See Ref. 5a, p. 907.

    Google Scholar 

  48. Ref. 4b, Section 1.8.

    Google Scholar 

  49. Ref. 4b, Chapter 2.

    Google Scholar 

  50. Fry, K. L.; Kuo, C. P.; Larsen, C. A.; Cohen, R. M.; Stringfellow, G. B.; Melas, A. J. Electron. Mater. 1986, 15, 91

    Article  ADS  Google Scholar 

  51. Knauf, J. Schmitz, D.; Jürgensen, H.; Heyen, M. J. Cryst. Growth 1988, 93, 34.

    Article  ADS  Google Scholar 

  52. Schlyer, D. J.; Ring, M. A. J. Organomet. Chem. 1976, 114, 9

    Article  Google Scholar 

  53. Larsen, C.A.; Stringfellow, G.B. J. Cryst. Growth 1986, 75, 247.

    Article  ADS  Google Scholar 

  54. Haigh, J.; O’Brien, S. J. Cryst. Growth 1984, 67, 75

    Article  ADS  Google Scholar 

  55. Yoshida, M.; Watanabe, H.; Uesugi, F. J. Electrochem. Soc. 1985, 132, 677

    Article  Google Scholar 

  56. Larsen, C. A.; Stringfellow, G. B. J. Cryst. Growth 1986, 75, 247

    Article  ADS  Google Scholar 

  57. Buchan, N.I.; Larsen, C.A.; Stringfellow, G.B. J. Cryst. Growth 1988, 92, 591.

    Article  ADS  Google Scholar 

  58. Nishizawa, J.; Kurabayashi, T. J. Electrochem. Soc. 1983, 130, 413

    Article  Google Scholar 

  59. Nishizawa, J. Kurabayashi, T. J. Cryst. Growth 1988, 99, 525.

    Article  Google Scholar 

  60. Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. Appl. Phys. Lett. 1987, 51, 1024

    Article  ADS  Google Scholar 

  61. Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. J. Cryst. Growth 1988, 92, 605

    Article  ADS  Google Scholar 

  62. Larsen, C.A.; Buchan, N.I.; Stringfellow, G.B. Appl. Phys. Lett. 1988, 52, 480.

    Article  ADS  Google Scholar 

  63. Didchenko, R.; Alix, J. E.; Toeniskoetter, R. H. J. Inorg. Nucl. Chem. 1960, 14, 35

    Article  Google Scholar 

  64. Beachley, O. T., Jr.; Kopasz, J. P.; Zhang, H.; Hunter, W. E.; Atwood, J. L. J. Organomet. Chem. 1987, 325, 69 and references cited therein.

    Article  Google Scholar 

  65. Maury, F.; Combes, M.; Constant, G. In “Proceedings of European Conference on CVD-4, 1983”; Bloem, J.; Verspui, G.; Wolff, L. R., Eds. Chem. Abstr. 99: 185120.

    Google Scholar 

  66. Cowley, A. H.; Benac, B. L.; Ekerdt, J. G.; Jones, R. A.; Kidd, K. B.; Lee, J. Y.; Miller, J. E. J. Am. Chem. Soc. 1988, 110, 6248

    Article  Google Scholar 

  67. Cowley, A.H.; Jones, R.A. Angew. Chem., Int. Ed. Engl. 1989, 28, 1208.

    Article  Google Scholar 

  68. See, for example, Andres, R.P.; Averback, R.S.; Brown, W.L.; Brus, L.E.; Goddard, W.A.; Kaldor, A.; Louie, S.G.; Moscovits, M.; Peercy, P.S.; Riley, S.J.; Siegel, R.W.; Spaepen, F.; Wang, Y. J. Mater. Res. 1989, 4, 704.

    Article  ADS  Google Scholar 

  69. See, for example, Hess, K.L.; Riccio, R.J. J. Cryst. Growth 1986, 77, 95.

    Article  ADS  Google Scholar 

  70. Lum, R. M.; Klingert, J. K.; Kisker, D. W.; Tennant, D. M.; Morris, M. D.; Malm, D. M.; Kovalchick, J.; Heimbrook, L. A. J. Electron. Mater. 1988, 17, 101

    Article  ADS  Google Scholar 

  71. Brauers, A. Kayser, O.; Hall, R.; Heinecke, H.; Balk, P. J. Cryst. Growth 1988, 93, 7.

    Article  ADS  Google Scholar 

  72. Lum, R.M.; Klingert, J.K.; Wynn, A.S.; Lamont, M.G. Appl. Phys. Lett. 1988, 52, 1475.

    Article  ADS  Google Scholar 

  73. Bhat, R.; Koza, M.A.; Skromme, B.J. Appl. Phys. Lett. 1987, 50, 1194.

    Article  ADS  Google Scholar 

  74. Lum, R. K.; Klingert, J. K.; Lamont, M. G. Appl. Phys. Lett. 1987, 50, 284

    Article  ADS  Google Scholar 

  75. Chen, C. H.; Larsen, C. A.; Stringfellow, G. B. Appl. Phys. Lett. 1987, 50, 218

    Article  ADS  Google Scholar 

  76. Kurtz, S.R.; Olson, J.M.; Kibbler, A. J. Electron. Mater. 1989, 18, 15.

    Article  ADS  Google Scholar 

  77. Moss, R.H.; Evans, J.S. J. Cryst. Growth 1981, 55, 129.

    Article  ADS  Google Scholar 

  78. Chen, C.H.; Larsen, C.A.; Stringfellow, G.B.; Brown, D.W.; Robertson, A.J. J. Cryst. Growth 1986, 77, 11.

    Article  ADS  Google Scholar 

  79. Moore, A. H.; Scott, M. D.; Davies, J. J.; Bradley, D. C.; Faktor, M. M.; Chudzynska, H. J. Cryst. Growth 1986, 77, 19

    Article  ADS  Google Scholar 

  80. Reier, F.-W.; Wolfram, P.; Schumann, H. J. Cryst. Growth 1986, 77, 23

    Article  ADS  Google Scholar 

  81. Shenai-Khatkhate, D.V.; Orrell, E.D.; Mullin, J.B.; Cupertino, D.C.; Cole-Hamilton, D.J. J. Cryst. Growth 1986, 77, 27.

    Article  ADS  Google Scholar 

  82. Moss, R. H.; Evans, J. S. J. Cryst. Growth 1981, 55, 129

    Article  ADS  Google Scholar 

  83. Moss, R.H. J. Cryst. Growth 1984, 68, 78.

    Article  ADS  Google Scholar 

  84. Lum, R.M.; Klingert, J.K.; Kisker, D.W.; Abys, S.M.; Stevie, F.A. J. Cryst. Growth 1988, 93, 120.

    Article  ADS  Google Scholar 

  85. Smith, D.L.; McGill, T.C.; Schulman, J.N. Appl. Phys. Lett. 1983, 43, 180.

    Article  ADS  Google Scholar 

  86. Irvine, S.J.C.; Mullin, J.B. J. Cryst. Growth 1981, 55, 107.

    Article  ADS  Google Scholar 

  87. Mullin, J.B.; Irvine, S.J.C.; Ashen, D.J. J. Cryst. Growth 1981, 55, 92.

    Article  ADS  Google Scholar 

  88. Mullin, J. B.; Geiss, J.; Irvine, S. J. C.; Gough, J. S.; Royle, A. In “Materials for Infrared Detectors and Sources”; Mater. Res. Soc. Symp. Proc. Vol. 1987, 90, 367 and references cited therein.

    Article  Google Scholar 

  89. Manasevit, H.M.; Simpson, W.I. J. Electrochem. Soc. 1971, 118, 644.

    Article  Google Scholar 

  90. Hoke, W.E.; Lemonias, P.J.; Korenstein, R. J. Mater. Res. 1988, 3, 329.

    Article  ADS  Google Scholar 

  91. Korenstein, R.; Hoke, W.E.; Lemonias, P.J.; Kiga, K.T.; Harris, D.C. J. Appl. Phys. 1987, 62, 4929.

    Article  ADS  Google Scholar 

  92. Lichtman, L.S.; Parsons, J.D.; Cirlin, E.-H. J. Cryst. Growth 1988, 86, 217.

    Article  Google Scholar 

  93. Boersma, J. “Comprehensive Organometallic Chemistry, ” Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Chapter 16.

    Google Scholar 

  94. Kisker, D.W.; Steigerwald, M.L.; Kometani, T.Y.; Jeffers, K.S. Appl. Phys. Lett. 1987, 50, 1681.

    Article  ADS  Google Scholar 

  95. Steigerwald, M.L.; Sprinkle, C.R. J. Am. Chem. Soc. 1987, 109, 7200.

    Article  Google Scholar 

  96. Osakado, K.; Yamamoto, T. J. Chem. Soc., Chem. Commun. 1987, 1117.

    Google Scholar 

  97. Brennan, J.G.; Siegrist, T.; Carroll, P.J.; Stuczynski, S.M.; Reynders, P.; Brus, L.E.; Steigerwald, M.L. Chem. Mater. 1990, 2, 403.

    Article  Google Scholar 

  98. Zingaro, R.A.; Stevens, B.H.; Irgolic, K. J. Organomet. Chem. 1965, 4, 320.

    Article  Google Scholar 

  99. Steigerwald, M.L.; Sprinkle, C.R. Organometallics 1988, 7, 245.

    Article  Google Scholar 

  100. Steigerwald, M. L.; Rice, C. E. J. Am. Chem. Soc. 1988, 110, 4228

    Article  Google Scholar 

  101. Steigerwald, M. L. Chem. Mater. 1989, 1, 52

    Article  Google Scholar 

  102. Brennan, J.G.; Siegrist, T.; Stuczynski, S.M.; Steigerwald, M.L. J. Am. Chem. Soc. 1989, 111, 9240.

    Article  Google Scholar 

  103. Kisker, D. W.; Feldman, R. D. J. Cryst. Growth 1985, 72, 102

    Article  ADS  Google Scholar 

  104. Irvine, S.J.C.; Mullin, J.B.; Tunnidiffe, J. J. Cryst. Growth 1984, 68, 188.

    Article  ADS  Google Scholar 

  105. Irvine, S.J.C. CRC Critical Rev. Solid State Mater. Sci. 1987, 13, 279.

    Article  ADS  Google Scholar 

  106. Brennan, J.G.; Siegrist, T.; Carroll, P.J.; Stuczynski, S.M.; Brus, L.E.; Steigerwald, M.L. J. Am. Chem. Soc. 1989, 111, 4141.

    Article  Google Scholar 

  107. Rosetti, R.; Hull, R.; Gibson, J.M.; Brus, L.E. J. Chem. Phys. 1984, 82, 552.

    Article  ADS  Google Scholar 

  108. Steigerwald, M.L.; Alivisatos, A.P.; Gibson, J.M.; Harris, T.D.; Kortan, A.R.; Müller, A.J.; Thayer, A.M.; Duncan, T.M.; Douglass, D.C.; Brus, L.E. J. Am. Chem. Soc. 1988, 110, 3046.

    Article  Google Scholar 

  109. Bawendi, M.G.; Kortan, A.R.; Steigerwald, M.L.; Brus, L.E. J. Chem. Phys. 1989, 91, 7782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steigerwald, M.L. (1992). Molecular Precursors to Thin Films. In: Fehlner, T.P. (eds) Inorganometallic Chemistry. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2459-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2459-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2461-2

  • Online ISBN: 978-1-4899-2459-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics