Skip to main content

Vasoactive Peptides and Regulation of Hemodynamics in Different Functional States of the Organism

  • Chapter
Advances in Myocardiology

Abstract

It is important to emphasize that the biochemical systems participating in humoral hemodynamic regulation may function at any level of the circulatory homeostasis: in the blood as a biological fluid constantly circulating along the vessels, at the microcirculatory bed where the exchange with tissues is realized, on the tonic activity of the resistive and capacitance vessels, defining the systemic blood pressure rate and organ redistribution, or, finally, on the main motive force of the blood, the heart. The interrelations of some molecular factors form the biochemical basis for the interaction of the main humoral systems. These factors are kallikrein for kinins and converting enzyme for the renin-angiotensin system, 9-ketoreductase and phospholipase for kinin and prostaglandin systems, and Hageman factors for coagulation, fibrinolysis, and kininogenesis systems. This main scheme includes “functional” connections, which are defined by a physiological interaction, and those between the central and peripheral nervous systems. We may, evidently, postulate an important biological regularity of a multifunctional participation of the same physiologically active factors in maintaining circulatory homeostasis. On the other hand, we have to emphasize the functional unity and joint correlating actions of different biochemical blood systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chernukh, A. M., Alexeyev, O. V., and Ionov, B. V. 1981. [Interaction of erythrocytes in aggregation according to raster electron microscopy.] Biull. Eksp. Biol. Med. 2:226–228.

    Google Scholar 

  2. Chernukh, A. M., and Gomazkov, O. A. 1976. [On regularity and pathogenetic role of kallikrein-kinin system of organism.] Patol. Fisiol. Eksp. Ther. 1:5–16.

    Google Scholar 

  3. Chernukh, A. M., Gomazkov, O. A., Komissarova, N. V., and Lantsberg, L. 1981. [Changes in indices of Hageman factor system in human adaptation to intensive physical exercise.] Patol. Fisiol. Eksp. Ther. 5:25–28.

    Google Scholar 

  4. Chernukh, A. M., Oehme, P., and Gomazkov, O. A. 1980. [Hemodynamic characteristics of the polypeptide substance P in comparison with bradykinin and prostaglandin E1.] Biull. Eksp. Biol. Med. 9:259–260.

    Google Scholar 

  5. Derkx, F. H., Bouma, B. N., and Schalekamp, M. 1979. An intrinsic factor XII-prekallikrein-dependent pathways activates the human plasma renin-angiotensin system. Nature280:315–316.

    Article  PubMed  CAS  Google Scholar 

  6. Donaldson, V. H., Kleniewski, J., Saito, H., and Sayed, J. K. 1977. Prekallikreindeficiency and Fitzgerald trait clotting defect. Evidence that high molecular weight kininogen and prekallikrein exist as a complex in normal human plasma. J. Clin. Invest. 60:571–584.

    Article  PubMed  CAS  Google Scholar 

  7. Eliseeva, T. E., and Orekhovitch, V. N. 1963. [Isolation and study of specificity of carboxycathepsin.] Dokl. Akad. Nauk. SSSR153:954–956.

    CAS  Google Scholar 

  8. Frey, E. K., and Kraut, H. 1928. Ein neues Kreislaufhormon und seine Wirkung. Arch. Exp. Pathol. Pharmacol. 133:1–56.

    Article  CAS  Google Scholar 

  9. Frey, E. K., Kraut, H., and Werle, E. 1950. Kallikrein (Padutin). Enke, Stuttgart.

    Google Scholar 

  10. Gomazkov, O. A. 1973. [Vasoactive kinins in physiology and pathology of cardiovascular system.] Kardiologiia7:130–144.

    Google Scholar 

  11. Gomazkov, O. A. 1974. Das Kallikrein-Klinin-System bei Myokardischemie und Herzinfarct—Experimentelle Untersuchungen. Med. Welt25:804–807.

    PubMed  CAS  Google Scholar 

  12. Gomazkov, O. A., and Komissarova, N. V. 1976. [Method of simultaneous determination of precursors of kallikrein, plasmin, thrombin and their inhibitors in human blood plasma.] Biull. Eksp. Biol. Med. 5:632–634.

    Google Scholar 

  13. Gomazkov, O. A., Shimkovitch, M. V., and Chernukh, A. M. 1977. [Interrelation between kininase and angiotensin-converting activity under normal condition and in experimentally induced myocardial infarction.] Kardiologiia17:103–108.

    PubMed  CAS  Google Scholar 

  14. Gordon, R. J. 1974. Potential significance of plasma viscosity and hematocrit variations in myocardial ischemia. Am. Heart J. 87:175–182.

    Article  PubMed  CAS  Google Scholar 

  15. Griffin, J. 1978. Role of surface in surface-dependent activation of Hageman factor (blood coagulation factor XII). Proc. Natl. Acad. Sci. U.S.A. 75:1998–2002.

    Article  PubMed  CAS  Google Scholar 

  16. Meier, H. L., Pierce, J. V., Colman, R. W., and Kaplan, A. P. 1977. Activation and function of human Hageman factor. The role of high molecular weight kininogen and prekallikrein. J. Clin. Invest. 60:18–31.

    Article  PubMed  CAS  Google Scholar 

  17. Moncada, S., Mullane, K. M., and Vane, J. R. 1979. Prostacycline release by bradykinin in vivo. Br. J. Pharmacol. 66:96P-97P.

    PubMed  CAS  Google Scholar 

  18. Movat, H. Z. 1978. The kinin system: Its relation to blood coagulation, fibrinolysis and formed elements of the blood. Rev. Physiol. Biochem. Pharmacol. 84:143–202.

    Article  PubMed  CAS  Google Scholar 

  19. Osmond, D. H., Lo, E. K., Loh, A. Y., Zingg, E. A., and Hedlin, A. H. 1978. Kallikrein and plasmin as activators of inactive renin. Lancet2:1375.

    Article  CAS  Google Scholar 

  20. Rocha e Silva, M., Beraldo, W., and Rosenfeld, G. 1949. Bradykinin, a hypotensive and smooth muscle stimulating factor releasing from plasma globulin by snake venom and by trypsin. Am. J. Physiol. 156:261–273.

    PubMed  Google Scholar 

  21. Sealey, J. E., Altas, S. A., and Laragh, J. 1978. Linking the kallikrein and kinin system via activation of inactive renin. New data and hypothesis. Am. J. Med. 65:994–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chernukh, A.M., Gomazkov, O.A. (1983). Vasoactive Peptides and Regulation of Hemodynamics in Different Functional States of the Organism. In: Chazov, E., Saks, V., Rona, G. (eds) Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4441-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4441-5_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4443-9

  • Online ISBN: 978-1-4757-4441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics