Skip to main content

Iterative Methods for the Solution of Large Systems of Linear Equations. Some Further Methods

  • Chapter
Introduction to Numerical Analysis

Part of the book series: Texts in Applied Mathematics ((TAM,volume 12))

  • 809 Accesses

Abstract

Many problems in practice require the solution of very large systems of linear equations Ax = b in which the matrix A, fortunately, is sparse, i.e., has relatively few nonvanishing elements. Systems of this type arise, e.g., in the application of difference methods or finite-element methods to the approximate solution of boundary-value problems in partial differential equations. The usual elimination methods (see Chapter 4) cannot normally be applied here, since without special precautions they tend to lead to the formation of more or less dense intermediate matrices, making the number of arithmetic operations necessary for the solution much too large, even for present-day computers, not to speak of the fact that the intermediate matrices no longer fit into the usually available computer memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  • Axelsson, O.: Solution of linear systems of equations: Iterative methods. In: Barker (1977).

    Google Scholar 

  • Barker, V. A. (Ed.): Sparse Matrix Techniques. Lecture Notes in Mathematics 572. Berlin, Heidelberg, New York: Springer-Verlag (1977).

    Google Scholar 

  • Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. of Comput. 31, 333–390 (1977).

    Article  MATH  Google Scholar 

  • Briggs, W. L.: A Multigrid Tutorial. Philadelphia: SIAM (1987).

    Google Scholar 

  • Buneman, O.: A compact non-iterative Poisson solver. Stanford University, Institute for Plasma Research Report No. 294, Stanford, CA (1969).

    Google Scholar 

  • Buzbee, B. L., Dorr, F. W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal. 11, 753–763 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  • Buzbee, B. L., Dorr, F. W., George, J. A., Golub, G. H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, 722–736 (1971).

    Google Scholar 

  • Buzbee, B. L., Golub, G. H., Nielson, C. W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., Glowinski, R., Periaux, J., Widlund, O. (Eds.): Proceedings of the Second International Symposium on Domain Decomposition Methods. Philadelphia: SIAM (1989).

    Google Scholar 

  • Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1967).

    Google Scholar 

  • Glowinski, R., Golub, G. H., Meurant, G. A., Periaux, J. (Eds.): Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia: SIAM (1988).

    Google Scholar 

  • Hackbusch, W.: Multigrid Methods and Applications. Berlin, Heidelberg, New York: Springer-Verlag (1985).

    Google Scholar 

  • Hackbusch, W., Trottenberg, U. (Eds.): Multigrid Methods. Lecture Notes in Mathematics 960. Berlin, Heidelberg, New York: Springer-Verlag (1982).

    Google Scholar 

  • Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Nat. Bur. Standards J. Res. 49, 409–436 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  • Hockney, R. W.: The potential calculation and some applications, Methods of Computational Physics 9, 136–211. New York, London: Academic Press (1969).

    Google Scholar 

  • Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell Publ. Co. (1964).

    MATH  Google Scholar 

  • Keyes, D. E., Gropp, W. D.: A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation. SIAM J. Sci. Statist. Comput. 8, s166 — s202 (1987).

    Article  MathSciNet  Google Scholar 

  • McCormick, S.: Multigrid Methods. Philadelphia: SIAM (1987).

    Book  MATH  Google Scholar 

  • Meijerink, J. A., van der Vorst, H. A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp. 31, 148162 (1977).

    Google Scholar 

  • O’Leary, D. P., Widlund, O.: Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions. Math. Comp. 33, 849–879 (1979).

    MathSciNet  MATH  Google Scholar 

  • Proskurowski, W., Widlund, O.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. Comp. 30, 433–468 (1976).

    MathSciNet  MATH  Google Scholar 

  • Reid, J. K. (Ed.): Large Sparse Sets of Linear Equations. London, New York: Academic Press (1971).

    MATH  Google Scholar 

  • Reid, J. K. (Ed.): On the method of conjugate gradients for the solution of large sparse systems of linear equations. In: Reid (1971), 231–252.

    Google Scholar 

  • Rice, J. R., Boisvert, R. F.: Solving Elliptic Problems Using ELLPACK. Berlin, Heidelberg, New York: Springer (1984).

    Google Scholar 

  • Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer. Math. 22, 37–68 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  • Schröder, J., Trottenberg, U., Reutersberg, H.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben II. Numer. Math. 26, 429–459 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Swarztrauber, P. N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490–501 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  • Varga, R. S.: Matrix Iterative Analysis. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1962).

    Google Scholar 

  • Wachspress, E. L.: Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics. Englewood Cliffs, N.J.: Prentice-Hall (1966).

    Google Scholar 

  • Wilkinson, J. H., Reinsch, C.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarsstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer (1971).

    Google Scholar 

  • Wittmeyer, H.: Über die Lösung von linearen Gleichungssystemen durch Iteration. Z. Angew. Math. Mech. 16, 301–310 (1936).

    Article  MATH  Google Scholar 

  • Young, D. M.: Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. New York: Academic Press (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (1993). Iterative Methods for the Solution of Large Systems of Linear Equations. Some Further Methods. In: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2272-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2272-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2274-1

  • Online ISBN: 978-1-4757-2272-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics