Skip to main content

The Liquid-Crystallographic Structure of Fluid Lipid Bilayer Membranes

  • Chapter
Biological Membranes

Abstract

Knowledge of the structure of lipid bilayers in the fluid liquid-crystalline state is important for understanding the permeability and stability of membranes and the insertion and folding of membrane proteins. Quantitative structural models are especially important at the present time for validation of Monte Carlo and molecular dynamics simulations of lipid bilayers (Pastor, 1994). Diffraction studies of phospholipid crystals at low hydrations can provide atomic-resolution images of the phospholipid molecules of membranes (Pascher et al, 1992) but such images are of marginal value for understanding membrane bilayers for the obvious reason that the phospholipids are in a noncrystalline state. Fluid bilayers present special problems to the structural biologist because their inherent thermal motion and disorder exclude entirely the possibility of obtaining three-dimensional structural information. The only kind of structural image that can be obtained by diffraction methods is a one-dimensional one consisting of the time-averaged transbilayer distributions of the multiatom submolecular groups comprising the lipids such as the phosphate, carbonyl groups, double-bonds, etc. (Figure 1). Such projections have become a standard method for describing the results of bilayer simulations (Damodaran and Merz, 1994; Egberts et al, 1994; Fattal and Ben-Shaul, 1994; Heller et al, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akutsu H, Nagamori T (1991): Conformational analysis of the polar head group in phosphatidylcholine bilayers—A structural change induced by cations. Biochemistry 30:4510–4516

    Article  PubMed  CAS  Google Scholar 

  • Bevington PR (1969): Data Reduction and Error Analysis for the Physical Sciences. New York: McGraw-Hill Book Company

    Google Scholar 

  • Blasie JK, Schoenborn BP, Zaccai G (1975): Direct methods for the analysis of lamellar neutron diffraction from oriented multilayers: A difference Patterson deconvolution approach. Brookhaven Symp Biol 27:11158–11167

    Google Scholar 

  • Blaurock AE (1982): Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. Biochim Biophys Acta 650:167–207

    PubMed  CAS  Google Scholar 

  • Braach-Maksvytis VLB, Cornell BA (1988): Chemical shift anisotropics obtained from aligned egg yolk phosphatidylcholine by solid state 13C nuclear magnetic resonance. Biophys J 53:839–843

    Article  PubMed  CAS  Google Scholar 

  • BĂĽldt G, Gaily HU, Seelig J, Zaccai G (1979): Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol 134:673–691

    Article  PubMed  Google Scholar 

  • BĂĽldt G, Gaily HU, Seelig A, Seelig J, Zaccai G (1978): Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271:182–184

    Article  PubMed  Google Scholar 

  • Damodaran KV, Merz KM (1994): A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J 66:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Egberts E, Marrink S J, Berendsen HJC (1994): Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436

    Article  PubMed  CAS  Google Scholar 

  • Elder M, Hitchcock PB, Mason R, Shipley GG (1977): A refinement analysis of the crystallography of the phospholipid 1,2-dilauroyl-DL-phosphatidylethanolamine, and some remarks on lipid-lipid and lipid-protein interactions. Proc R Soc Lond 354:157–170

    Article  CAS  Google Scholar 

  • Fattal DR, Ben-Shaul A (1994): Mean-field calculations of chain packing and conformational statistics in lipid bilayers: Comparison with experiments and molecular dynamics studies. Biophys J 67:983–995

    Article  CAS  Google Scholar 

  • Franks NP, Levine YK (1981): Low-angle X-ray diffraction. In: Membrane Spectroscopy, Grell E, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Franks NP, Lieb WR (1979): The structure of lipid bilayers and the effects of general anesthetics: An X-ray and neutron diffraction study. J Mol Biol 133:469–500

    Article  PubMed  CAS  Google Scholar 

  • Hauser H, Pascher I, Pearson RH, Sundell S (1981): Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    PubMed  CAS  Google Scholar 

  • Heller H, Schaefer M, Schulten K (1993): Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360

    Article  CAS  Google Scholar 

  • Hitchcock PB, Mason R, Shipley GG (1975): Phospholipid arrangements in multilayers and artificial membranes: Quantitative analysis of the X-ray data from a multilayer of 1,2-dimyristoyl-DL-phosphatiylethanolamine. J Mol Biol 94:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hosemann R, Bagchi SN (1962): Direct Analysis of Diffraction by Matter. Amsterdam: North-Holland

    Google Scholar 

  • Inoko Y, Mitsui T (1978): Structural parameters of dipalmitoylphosphatidylcholine lamellar phases and bilayer phase transitions. J Phys Soc Japan 44:1918–1924

    Article  CAS  Google Scholar 

  • Jacobs RE, White SH (1989): The nature of the hydrophobic binding of small peptides at the bilayer interface: Implications for the insertion of transbilayer helices. Biochemistry 28:3421–3437

    Article  PubMed  CAS  Google Scholar 

  • Janiak MJ, Small DM, Shipley GG (1979): Temperature and compositional dependence of the structure of hydrated dymyristoyl lecithin. J Biol Chem 254:6068–6078

    PubMed  CAS  Google Scholar 

  • King GI, White SH (1986): Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys J 49:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Kuriyan J, Petsko GA, Levy RM, Karplus M (1986): Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. J Mol Biol 190:227–254

    Article  PubMed  CAS  Google Scholar 

  • Levine YK, Wilkins MHF (1971): Structure of oriented lipid bilayers. Nature New Biol 230:69–72

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh TJ, Simon SA (1986): Hydration force and bilayer deformation: A reevaluation. Biochemistry 25:4058–4066

    Article  PubMed  CAS  Google Scholar 

  • Pascher I, Lundmark M, Nyholm P-G, Sundell S (1992): Crystal structures of membrane lipids. Biochim Biophys Acta 1113:339–373

    PubMed  CAS  Google Scholar 

  • Pastor RW (1994): Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr Opin Struct Biol 4:486–492

    Article  CAS  Google Scholar 

  • Pearson RH, Pascher I (1979): The molecular structure of lecithin dihydrate. Nature 281:499–501

    Article  PubMed  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA (1989): Numerical Recipes. The Art of Scientific Computing. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Ranck JL, Keira T, Luzzati V (1977): A novel packing of the hydrocarbon chains in lipids: The low temperature phases of dipalmitoylphosphatidylglycerol. Biochim Biophys Acta 488:432–441

    PubMed  CAS  Google Scholar 

  • Schoenborn BP (1975): Advantages of neutron scattering for biological structure analysis. Brookhaven Symp Biol 27:110–117

    Google Scholar 

  • Schwartz S, Cain JE, Dratz EA, Blasie JK (1975): An analysis of lamellar X-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys J 15:1201–1233

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Seelig J (1977): Effect of a single cis double bond on the structure of a phospholipid bilayer. Biochemistry 16:45–50

    Article  PubMed  CAS  Google Scholar 

  • Seelig A, Seelig J (1974): The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    Article  PubMed  CAS  Google Scholar 

  • Smith GS, Safinya CR, Roux D, Clark NA (1987): X-ray studies of freely suspended films of a multilamellar lipid system. Mol Cryst Liq Cryst 144:235–255

    Article  CAS  Google Scholar 

  • Strenk LM, Westerman PW, Doane JW (1985): A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region. Biophys J 48:765–773

    Article  PubMed  CAS  Google Scholar 

  • Warren BE (1969): X-ray Diffraction. Reading, MA: Addison-Wesley

    Google Scholar 

  • White SH (1994): Hydropathy plots and the prediction of membrane protein topology. In: Membrane Protein Structure: Experimental Approaches, White SH, ed. New York: Oxford University Press

    Google Scholar 

  • White SH, Wiener MC (1995): Determination of the structure of fluid lipid bilayer membranes. In: Permeability and Stability of Lipid Bilayers, Disalvo EA, Simon SA, eds. Boca Raton: CRC Press

    Google Scholar 

  • White SH, Wimley WC (1994): Peptides in lipid bilayers: Structural and thermodynamic basis for partitioning and folding. Cur Opinion Struc Biol 4:79–86

    Article  CAS  Google Scholar 

  • Wiener MC, King GI, White SH (1991): Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distribution of double-bonds and water. Biophys J 60:568–576

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1991a): Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analog of dioleoylphosphatidylcholine. Biochemistry 30:6997–7008

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1991b): Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Biophys J 59:162–173

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1991c): Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction II. “Compostion-Space” refinement method. Biophys J 59:174–185

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1992a): Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447

    Article  PubMed  CAS  Google Scholar 

  • Wiener MC, White SH (1992b): Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys J 61:428–433

    Article  PubMed  CAS  Google Scholar 

  • Willis BTM, Pryor AW (1975): Thermal Vibrations in Crystallography. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Worcester DL (1975): Structural analysis of hydrated egg lecithin and cholesterol bilayers. Brookhaven Symp Biol 27:11137–11157

    Google Scholar 

  • Worcester DL, Franks NP (1976): Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction. J Mol Biol 100:359–378

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G, BĂĽldt G, Seelig A, Seelig J (1979): Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol 134:693–706

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Schulten K (1995): Molecular dynamics study of a membrane-water interface. J Phys Chem 99:2194–2207

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

White, S.H., Wiener, M.C. (1996). The Liquid-Crystallographic Structure of Fluid Lipid Bilayer Membranes. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics