Skip to main content

Penning Traps, Masses and Antiprotons

  • Chapter
Fundamental Symmetries

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 31))

Abstract

Penning traps are an important new tool for mass spectroscopy, aided by an invariance theorem which facilitates precise mass spectroscopy in an imperfect trap. The motions of particles in a Penning trap are discussed and the features which make it very attractive to do mass spectroscopy in a trap are illustrated. Careful attention is paid to the motivations and prospects for a measurement of the inertial mass of the antiproton. Prospects for such a measurement are now excellent since our TRAP Collaboration actually captured antiprotons in a Penning trap only 2 months ago. An overview of ways to cool particles within the trap is provided and brief speculations upon the possibility of producing antihydrogen in a trap are included.

Invited Lecture at the International School of Physics with Low Energy Antiprotons: Fundamental Symmetries, Sept. 24 – Oct. 4, 1986, Erice, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  2. D. J. Wineland, P. Ekstrom, H. G. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973)

    Article  ADS  Google Scholar 

  3. L.S. Brown and G. Gabrielse, Phys. Rev. A. 25, 2423 (1982)

    Article  ADS  Google Scholar 

  4. R.J. Van Dyck, D.J. Wineland, P. Ekstrom and H. G. Dehmelt, Appl. Phys. Lett. 28, 446 (1976)

    Article  ADS  Google Scholar 

  5. G. Gabrielse, Phys. Rev. A 27, 2277 (1983)

    Article  ADS  Google Scholar 

  6. D.A. Laude Jr., C.L. Johlman, R.S. Brown, D.A. Weil and C.L. Wilkins, in Mass Spec. Rev. 5, 107 (Wiley, N.Y., 1986).

    Google Scholar 

  7. M.L. Gross, D.L. Rempel, Science 226, 261 (1984).

    Article  ADS  Google Scholar 

  8. M. Allemann, H.P. Kellerhals, K.P. Wanczek, Int’l. J. of Mass Spec and Ion Proc. 46. 139 (1983).

    Article  Google Scholar 

  9. L. Smith, Phys. Rev. C 4, 22 (1971).

    Article  ADS  Google Scholar 

  10. C. Thibault, paper contributed to this school.

    Google Scholar 

  11. G. Gabrielse, H. Dehmelt and W. Kells, Phys. Rev. Lett. 54, 537 (1985)

    Article  ADS  Google Scholar 

  12. E.R. Cohen and B.N. Taylor, J. Chem. Ref. Data 2, 663 (1973)

    Article  ADS  Google Scholar 

  13. G. Gartner and E. Klempt, Z. Phys. 287, 1(1978)

    ADS  Google Scholar 

  14. G. Graff, H. Kalinowsky and J. Traut, Z. Phys. 297, 35,(1980)

    ADS  Google Scholar 

  15. R. S. Van Dyck Jr. and P. B. Schwinberg, Phys. Rev. Lett. 47, 395 (1981)

    Article  ADS  Google Scholar 

  16. R. S. Van Dyck Jr., F. Moore, D. Farnham and P. B. Schwinberg, Int. J. of Mass Spec. and Ion Proc. 66, 327 (1985)

    Article  Google Scholar 

  17. R. S. Van Dyck Jr., F. Moore, D. Farnham and P. B. Schwinberg, Bull. Am. Phys. Soc. 31 (1986)

    Google Scholar 

  18. D. J. Wineland, J.J. Bollinger, W.M. Itano, Phys. Rev. Lett. 50, 628 (1983)

    Article  ADS  Google Scholar 

  19. Schnatz, et.al., Nucl. Inst. and Meth. (in press).

    Google Scholar 

  20. R. S. Van Dyck, et al. (unpublished)

    Google Scholar 

  21. G. Audi, R.L. Graham, J.S. Geiger, Z. Phys. A 321, 533 (1985).

    Article  ADS  Google Scholar 

  22. E. Lippman, et.al., Phys. Rev. Lett. 54 285 (1985).

    Article  ADS  Google Scholar 

  23. G. Werth, et. al. (ununpublished).

    Google Scholar 

  24. A. Bamberger, et. al., Phys. Lett. 33B, 233 (1970).

    ADS  Google Scholar 

  25. A Hu, et.al., Nucl. Phys. A 254, 403 (1975).

    ADS  Google Scholar 

  26. P.L. Roberson, et. al., Phys. Rev. C 16, 1945 (1977).

    Article  ADS  Google Scholar 

  27. B.L. Roberts, Phys. Rev. D. 17, 358 (1978).

    Article  ADS  Google Scholar 

  28. S. van der Meer, private communication.

    Google Scholar 

  29. Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).

    Article  ADS  Google Scholar 

  30. G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas, W. Kells, Phys. Rev. Lett. 57, 2504 (1986)

    Article  ADS  Google Scholar 

  31. X.Fei, R.Davisson and G. Gabrielse, Rev. of Sci. Inst. (in press).

    Google Scholar 

  32. W. Kells, G. Gabrielse and K. Helmerson, Fermilab-Conf.-84/68 E (1984).

    Google Scholar 

  33. D.J. Larson, J.C. Berquist, J.J. Bollinger, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 57 70 (1986)

    Google Scholar 

  34. F.T. Cole and E.E. Mills, Ann. Rev. Nucl. Sci. 31, 295 (1981)

    Article  ADS  Google Scholar 

  35. H. Dehmelt, R.S. Van Dyck Jr., P.B. Schwinberg and G. Gabrielse, Bull. Am. Phys. Soc. 24, 757 (1979).

    Google Scholar 

  36. G. Gabrielse, K. Helmerson, R. Tjoelker, X. Fei, T. Trainor, W. Kells, H. Kalinowsky, in Proceedings of the First Workshop on Antimatter Physics at Low Energy, edited by B.E. Bonner and L.S. Pinsky, April 1986, Fermilab.

    Google Scholar 

  37. H. Bethe, E. Saltpeter, Quantum Mechanics of One and Two Electron Atoms, in Handbuch fur Physik, 35, 88 (Springer, Springer, 1957).

    Google Scholar 

  38. R. Neumann, H. Poth, A. Winnacker, A. Wolf, Z. Phys.313, 253 (1983).

    ADS  Google Scholar 

  39. K.J. Kugler, W. Paul and U. Trinks, Phys. Lett. 72B, 422 (1978).

    ADS  Google Scholar 

  40. A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985).

    Article  ADS  Google Scholar 

  41. S. Chu, J.E. Bjorkholm, A. Ashkin and A. Cable, Phys. Rev. Lett. 57, 314 (1986).

    Article  ADS  Google Scholar 

  42. D. Holtkamp, paper contributed to this school.

    Google Scholar 

  43. B.I. Deuten, A.S. Jensen, A. Miranda and G.C. Oades, in Proceedings of the First Workshop on Antimatter Physics at Low Energy, edited by B.E. Bonner and L.S. Pinsky, April 1986, Fermilab.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gabrielse, G. (1987). Penning Traps, Masses and Antiprotons. In: Bloch, P., Pavlopoulos, P., Klapisch, R. (eds) Fundamental Symmetries. Ettore Majorana International Science Series, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5389-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5389-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5391-1

  • Online ISBN: 978-1-4684-5389-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics