Skip to main content

Possible Experiments with Antihydrogen

  • Chapter
Fundamental Symmetries

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 31))

Abstract

Antihydrogen is the antimatter counterpart of hydrogen and therefore consists of an antiproton and a positron. Till now, no antihydrogen has been produced and identified at any facility in the world. Thus, formation and detection of one antihydrogen atom would be the first artificial realization of atomic neutral antimatter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Begemann, M., Gräff, G., Herminghaus, H., Kalinowsky, H., and Ley, R., 1982, Slow positron beam production by a 14 MeV c.w. electron accelerator, Nucl. Instrum. Meth. 201, 287

    Article  Google Scholar 

  • Bell, M., Bell, J., 1982, Capture of cooling electrons by cool protons, Part. Accel. 12, 49

    Google Scholar 

  • Berger, J., Blatt, P., Habfast, C., Haseroth, H., Hauck, P., Hill, Ch., Neumann, R., Pilkuhn, H., Poth, H., zu Putlitz, G., Seligmann, B., Winnacker, A., and Wolf, A., 1985, Feasibility study for antihydrogen production at LEAR, Proposal to the CERN PSCC (P86, spokesman H. Poth), CERN/PSCC/85–45, Geneva

    Google Scholar 

  • Berger, J., Blatt, P., Hauck, P., Neumann, R., 1986, Storage of megawatt laser pulses in a 4.5 m long confocal Fabry-Perot resonator, Optics Commun. 59, 255

    Article  ADS  Google Scholar 

  • Biraben, F., Grynberg, G., and Cagnac, C., 1974, Experimental evidence of two-photon transition without Doppler broadening, Phys. Rev. Lett. 32, 643

    Article  ADS  Google Scholar 

  • Budker, G.I., and Skrinskii, A.N., 1978, Electron cooling and new possibilities in elementary particle physics, Sov. Phys. Usp. 21, 277

    Article  ADS  Google Scholar 

  • Câmpeanu, R.I., and Beu, T., 1983, Hydrogen-antihydrogen interaction potential, Phys. Lett. 93A, 223

    ADS  Google Scholar 

  • Cassenti, B.N., 1985, Antimatter propulsion for OTV applications, J. Propulsion 1, 143

    Article  Google Scholar 

  • Conti, R.S., and Rich, A., 1985, The status of high intensity, low energy positron sources for antihydrogen production, in: “Proceedings of the Workshop on the Design of a Low-Energy Antimatter Facility in the USA” (Madison, Wisconsin, October 3–5, 1985), in print

    Google Scholar 

  • Dehmelt, H., Van Dyck, Jr. R.S., Schwinberg, P.B., and Gabrielse, G., 1979, Single elementary particles at rest in space, Bull. of Am. Phys. Soc. 24, 757

    Google Scholar 

  • Deutch, B.L, Jensen, A.S., Miranda, A., and Oades, G.C., 1986, p capture in neutral beams in: “Proceedings of the First Workshop on Antimatter Physics at Low Energy”, B.E. Bonner, L.S. Pinsky, eds., Fermi National Accelerator Laboratory, p. 371

    Google Scholar 

  • Erickson, G.W., 1971, Improved Lamb-shift calculation for all values of Z, Phys. Rev. Lett. 27, 780

    Article  ADS  Google Scholar 

  • Essen, L., Donaldson, R.W., Bangham, M.J., and Hope, E.G., 1971, Frequency of the hydrogen maser, Nature 229, 110

    Article  ADS  Google Scholar 

  • Forward, R.L., Cassenti, B.N., and Miller, D., 1985, Cost comparison of chemical and antihydrogen propulsion systems for high AV missions, paper presented at: AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference, July 8–10, Monterey, California

    Google Scholar 

  • Forward, R., Antiproton annihilation propulsion, J. Propulsion and Power 1, 370

    Google Scholar 

  • Gabrielse, G., Helmerson, K., Tjoelker, R., Fei, X., Trainor, T., Keils, W., and Kalinowsky, H., 1986a, Prospects for experiments with trapped antiprotons, in: “Proceedings of the First Workshop on Antimatter Physics at Low Energy”, B.E. Bonner, L.S. Pinsky, eds., Fermi National Accelerator Laboratory, p.211

    Google Scholar 

  • Gabrielse, G., Fei, X., Helmerson, K., Rolston, S.L., Tjoelker, R., Trainor, T.A., Kalinowsky, H., Haas, J., and Keils, W., 1986b, First capture of antiprotons in a penning trap: a keV source, Phys. Rev. Lett. 57, 2504

    Article  ADS  Google Scholar 

  • Gastaldi, U., and Möhl, D., 1984, Co-rotating beams of antiprotons and H” in LEAR and high resolution spectroscopy of pp̄ atoms in flight, in: “Physics with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p.649

    Google Scholar 

  • Gräff, G., Ley, R., Osipowicz, A., and Werth, G., 1984, Intense source of slow positrons from pulsed electron accelerators, Appl. Phys. A33, 59

    ADS  Google Scholar 

  • Gidley, D.W., and Rich, A., 1981, Tests of quantum electrodynamics using hydrogen, muonium, and positronium, in: “Atomic Physics 7, D. Kleppner and F.M. Pipkin, eds., Plenum Press, New York and London, p.313

    Chapter  Google Scholar 

  • Hänsch, T.W., Lee, S.A., Wallenstein, R., and Wieman, C., 1975, Doppler-free two-photon spectroscopy of hydrogen 1S-2S, Phys. Rev. Lett. 34, 307

    Article  ADS  Google Scholar 

  • Heberle, J.W., Reich, H.A., and Kusch, P., 1956, Hyperfine structure of the metastable hydrogen atom, Phys. Rev. 101, 612

    Article  ADS  Google Scholar 

  • Herr, H., Möhl, D., and Winnacker, A., 1984, Production of and experimentation with antihydrogen at LEAR, in: “Physics at LEAR with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p.659

    Google Scholar 

  • Hildum, E.A., Boesl, U., McIntyre, D.H., Beausoleil, R.G., and Hänsch, T.W., 1986, Measurement of the 1S-2S frequency in atomic hydrogen, Phys. Rev. Lett. 56, 576

    Article  ADS  Google Scholar 

  • Howell, R.H., Alvarez, R.A., and Stanek, M., 1982, Production of slow positron beams with an electron linac, Appl. Phys. Lett. 40, 751

    Article  ADS  Google Scholar 

  • Hütten, L., Poth, H., Wolf, A., Haseroth, H., and Hill, Ch., 1984, The electron cooling device for LEAR, in: “Physics at LEAR with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p. 605

    Google Scholar 

  • Hughes, V.W., 1960, in: “Quantum Electronics”, C.H. Townes, ed., Columbia University Press, New York, p.582

    Google Scholar 

  • Imai, K., 1985, Polarized antiprotons through antihydrogen formation, in: “Polarized Beams at SSC. Polarized Antiprotons”, AIP Conference Proceedings No. 145, A.D. Krisch, A.M.T. Lin, and O. Chamberlain, eds., New York, 1986, p.229

    Google Scholar 

  • Junker, B.R., and Bardsley, J.N., 1972, Hydrogen-antihydrogen interactions, Phys. Rev. Lett. 28, 1227

    Article  ADS  Google Scholar 

  • Kolos, W., Morgan, Jr., D.L., Schrader, D.M., and Wolniewicz, L., 1975, Hydrogen-antihydrogen interactions, Phys. Rev. A11, 1792

    ADS  Google Scholar 

  • Lefèvre, P., Möhl, D., and Plass, G., 1980, The CERN low energy antiproton ring (LEAR) project, in: “11th Int. Conf. on High-Energy Accelerators”, Birkhäuser Verlag, Basel

    Google Scholar 

  • Levenson, M.D., and Bloembergen, N., 1974, Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapour, Phys. Rev. Lett. 32, 645

    Article  ADS  Google Scholar 

  • Loudon, R., 1973, “The Quantum Theory of Light”, Clarendon Press, Oxford

    Google Scholar 

  • Lundeen, S.R., and Pipkin, F.M., 1981, Measurement of the Lamb shift in hydrogen, n=2, Phys. Rev. Lett. 46, 232

    Article  ADS  Google Scholar 

  • Mills, A.P., Jr., 1980, Brightness enhancement of slow positron beams, Appl. Phys. 23, 189

    Article  ADS  Google Scholar 

  • Mills, A.P., Jr., 1984, Techniques for studying systems containing many positrons, in: “Positron Scattering in Gases”, J.W. Humbertson and M.R.C. McDowell, eds., Plenum Press, New York and London, p. 121

    Chapter  Google Scholar 

  • Mohr, P.J., 1975, Lamb shift in a strong Coulomb potential, Phys. Rev. Lett. 34, 1050

    Article  ADS  Google Scholar 

  • Morgan, L.D., and Hughes, V.W., 1970, Atomic processes involved in matter-antimatter annihilation, Phys. Rev. D2, 1389

    ADS  Google Scholar 

  • Morgan, L.D., and Hughes, V.W., 1973, Atom-antiatom interactions, Phys. Rev. A7, 1811

    ADS  Google Scholar 

  • Neumann, R., Poth, H., Winnacker, A., and Wolf, A., 1983, Laser-enhanced electron-ion capture and antihydrogen formation, Z. Phys. A — Atoms and Nuclei 313, 253

    Article  ADS  Google Scholar 

  • Neumann, R., 1985, Laser induced electron capture and related physics, in: “Proceedings of the Workshop on Electron Cooling and Related Applications (ECOOL 1984)”, H. Poth, ed., Kernforschungszentrum Karlsruhe Report KfK 3846, July 1985, p. 387

    Google Scholar 

  • Poth, H., 1985, Electron cooling, Lecture given at the CERN Accelerator School, Oxford, September 1985, printed as report CERN-EP/86–65, 1986

    Google Scholar 

  • Poth, H., 1986a, Supplements to Proposal P86 (Berger et al., 1985) CERN/PSCC/86–21, CERN/PSCC/86–37

    Google Scholar 

  • Poth, H., 1986b, Physics with antihydrogen, in: AIP Conference Proceedings (2nd Conference on the Intersections between Particle and Nuclear Physics), D.F. Geesaman, New York, 1986, p.480

    Google Scholar 

  • Ramsey, N.F., 1956, “Molecular Beams”, Oxford University Press, London

    Google Scholar 

  • Rich, A., 1985, Private communication

    Google Scholar 

  • Sokolov, Yu.L., Atomic interferometer method measurement of the Lamb shift in hydrogen (n=2), 1984, in: “Precision Measurement and Fundamental Constants II”, B.N. Taylor and W.D. Phillips, eds., Natl. Bur. Stand. (U.S.), Spec. Publ. 617, p. 135

    Google Scholar 

  • Torelli, G., 1980, A device for trapping and cooling to low temperature antiprotons, in: “Proc. 5th Antiproton Symposium, Bressanone, 1980 (CLEUP, Padua, 1980), p.43

    Google Scholar 

  • Vasilenko, L.S., Chebotaev, V.P., and Shishaev, A.V., 1970, Line shape of two-photon absorption in a standing-wave field in a gas, JETP Letters 12, 113

    ADS  Google Scholar 

  • Wolf, A., Haseroth, H., Hill, C.E., Vallet, J.-L., Habfast, C., Poth, H., Seligmann, B., Blatt, P., Neumann, R., Winnacker, A., and zu Putlitz, G., 1985, Electron cooling of low-energy antiprotons and production of fast antihydrogen atoms, paper presented at Workshop on the Design of a Low-Energy Antimatter Facility in the USA, 3–5 October 1985, Madison, Wisconsin, in press

    Google Scholar 

  • Wolf, A., 1986, Antihydrogen, Paper presented at the 8th European Symposium on Proton-Antiproton Interactions, Thessaloniki, Greece, 1–5 September 1986, Preprint CERN-EP/86–179

    Google Scholar 

  • Zelenskiy, A.N., Kokhanovskiy, S.A., Lobashev, V.M., Sobolevskiy, N.M., and Volferts, E.A., 1984, A method of polarizing relativistic proton beams by laser radiation, Nucl. Instrum. Meth. 227, 429

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Neumann, R. (1987). Possible Experiments with Antihydrogen. In: Bloch, P., Pavlopoulos, P., Klapisch, R. (eds) Fundamental Symmetries. Ettore Majorana International Science Series, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5389-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5389-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5391-1

  • Online ISBN: 978-1-4684-5389-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics