Skip to main content

Fundamental Physics with Antihydrogen

  • Chapter
  • First Online:
Fundamental Physics in Particle Traps

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 256))

Abstract

Antihydrogen—the antimatter equivalent of the hydrogen atom—is of fundamental interest as a test bed for universal symmetries—such as CPT and the Weak Equivalence Principle for gravitation. Invariance under CPT requires that hydrogen and antihydrogen have the same spectrum. Antimatter is of course intriguing because of the observed baryon asymmetry in the universe—currently unexplained by the Standard Model. At the CERN Antiproton Decelerator (AD) [1], several groups have been working diligently since 1999 to produce, trap, and study the structure and behaviour of the antihydrogen atom. One of the main thrusts of the AD experimental program is to apply precision techniques from atomic physics to the study of antimatter. Such experiments complement the high-energy searches for physics beyond the Standard Model. Antihydrogen is the only atom of antimatter to be produced in the laboratory. This is not so unfortunate, as its matter equivalent, hydrogen, is one of the most well-understood and accurately measured systems in all of physics. It is thus very compelling to undertake experimental examinations of the structure of antihydrogen. As experimental spectroscopy of antihydrogen has yet to begin in earnest, I will give here a brief introduction to some of the ion and atom trap developments necessary for synthesizing and trapping antihydrogen, so that it can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Maury, The antiproton decelerator: AD. Hyp. Int. 109, 4352 (1997)

    Article  Google Scholar 

  2. G. Baur et al., Production of antihydrogen, Phys. Lett. B 368(3), 251 (1996). Bibcode:1996PhLB.368.251B. doi:10.1016/0370-2693(96)00005-6

    Google Scholar 

  3. G. Blanford et al., Observation of antihydrogen, Phys. Rev. Lett. 80(14), 3037 (1998). Bibcode:1998PhRvL.80.3037B. doi:10.1103/PhysRevLett.80.3037

    Google Scholar 

  4. G. Gabrielse et al., First capture of antiprotons in a penning trap: a kiloelectronvolt source. Phys. Rev. Lett. 57, 2504–2507 (1986)

    Article  ADS  Google Scholar 

  5. G. Gabrielse et al., Cooling and slowing of trapped antiprotons below 100 meV. Phys. Rev. Lett. 63, 13601363 (1989)

    Article  Google Scholar 

  6. C.M. Surko, R.G. Greaves, Emerging science and technology of antimatter plasmas and trap-based beams. Phys. Plasmas 11, 2333–2348 (2004)

    Article  ADS  Google Scholar 

  7. L.V. Jorgensen et al., New source of dense cryogenic positron plasmas. Phys. Rev. Lett. 95, 025002 (2005)

    Article  ADS  Google Scholar 

  8. M. Amoretti et al., Production and detection of cold antihydrogen atoms. Nature 419, 456459 (2002)

    Article  Google Scholar 

  9. G.B. Andresen et al., Trapped antihydrogen. Nature 468, 673–676 (2010)

    Article  ADS  Google Scholar 

  10. C. Amole et al., ALPHA collaboration, confinement of antihydrogen for 1000 seconds. Nat. Phys. 7, 558 (2011)

    Article  Google Scholar 

  11. C. Amole et al., Resonant quantum transitions in trapped antihydrogen atoms. Nature 483, 439 (2012)

    Article  ADS  Google Scholar 

  12. C. Amole et al., Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1785 (2012)

    Article  Google Scholar 

  13. G. Gabrielse et al., Trapped antihydrogen in its ground state. Phys. Rev. Lett. 108, 113002 (2012)

    Article  ADS  Google Scholar 

  14. E. Widmann et al., Measurement of the hyperfine structure of antihydrogen in a beam, Hyp. Int. 215, 1 (2013) (http://dx.doi.org/10.1007/s10751-013-0809-6)

  15. Y. Enomoto et al., Synthesis of cold antihydrogen in a cusp trap, Phys. Rev. Lett. 105, 243401 (2010) (http://link.aps.org/doi/10.1103/PhysRevLett. 105.243401)

    Google Scholar 

  16. A. Kellerbauer et al., (AEgIS collaboration), proposed antimatter gravity measurement with an antihydrogen beam. Nucl. Inst. Meth. B 266, 351 (2008). doi:10.1016/j.nimb.2007.12.010

    Article  ADS  Google Scholar 

  17. P. Perez, Y. Sacquin, The GBAR experiment: gravitational behaviour of antihydrogen at rest. Class. Quantum Grav. 29, 184008 (2012)

    Article  ADS  Google Scholar 

  18. G. Gabrielse, S.L. Rolston, L. Haarsma, W. Kells, Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38 (1988)

    Article  ADS  Google Scholar 

  19. M. Amoretti et al., High rate production of antihydrogen. Phys. Lett. B 578, 23–32 (2004)

    Article  ADS  Google Scholar 

  20. N. Madsen et al., Spatial distribution of cold antihydrogen formation. Phys. Rev. Lett. 94, 033403 (2005)

    Article  ADS  Google Scholar 

  21. G. Gabrielse et al., Background-free observation of cold antihydrogen with field ionization analysis of its states. Phys. Rev. Lett. 89, 213401 (2002)

    Article  ADS  Google Scholar 

  22. X.-P. Huang, F. Anderegg, E.M. Hollmann, C.F. Driscoll, T.M. ONeil, Steady-state confinement of non-neutral plasmas by rotating electric fields, Phys. Rev. Lett. 78, 875 (1997)

    Google Scholar 

  23. G.B. Andresen et al., Compression of antiproton clouds for antihydrogen trapping. Phys. Rev. Lett. 100, 203401 (2008)

    Article  ADS  Google Scholar 

  24. G.B. Andresen et al., Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. Rev. Sci. Inst. 80, 123701 (2009)

    Article  ADS  Google Scholar 

  25. N. Kuroda et al., Radial compression of an antiproton cloud for production of intense antiproton beams. Phys. Rev. Lett. 100, 203402 (2008)

    Article  ADS  Google Scholar 

  26. M.D. Tinkle et al., Low-order modes as diagnostics of spheroidal non-neutral plasmas. Phys. Rev. Lett. 72, 352 (1994)

    Article  ADS  Google Scholar 

  27. M.D. Tinkle, R.G. Greave, C.M. Surko, Low-order longitudinal modes of single-component plasmas. Phys. Plasmas 2, 2880 (1995)

    Article  ADS  Google Scholar 

  28. M. Amoretti et al., Complete nondestructive diagnostic of nonneutral plasmas based on the detection of electrostatic modes. Phys. Plasmas 10, 3056 (2003)

    Article  ADS  Google Scholar 

  29. M. Amoretti et al., Positron plasma diagnostic and temperature control for antihydrogen production. Phys. Rev. Lett. 91, 055001 (2003)

    Article  ADS  Google Scholar 

  30. C. Amole et al., In-situ electromagnetic field diagnostics with an electron plasma in a Penning-Malmberg trap. New J. Phys. (Submitted) (2013)

    Google Scholar 

  31. W. Bertsche et al., A magnetic trap for antihydrogen confinement. Nucl. Inst. Meth. A 566, 746 (2006)

    Article  ADS  Google Scholar 

  32. J. Fajans, W. Bertsche, K. Burke, S.F. Chapman, D.P van der Werf. Phys. Rev. Lett. 95, 15501 (2005)

    Google Scholar 

  33. J. Fajans, A. Schmidt, Malmberg-penning and minimum-B trap compatibility: the advantages of higher-order multipole traps. Nucl. Inst. Meth. A 521, 318 (2004)

    Article  ADS  Google Scholar 

  34. G. Andresen et al., Antimatter plasmas in a multipole trap for antihydrogen. Phys. Rev. Lett. 98, 023402 (2007)

    Article  ADS  Google Scholar 

  35. G. Gabrielse et al., Antihydrogen production within a penning-ioffe trap. Phys. Rev. Lett. 100, 113001 (2008)

    Article  ADS  Google Scholar 

  36. G. Andresen et al., The ALPHA detector: module production and assembly. JINST 7, C01051 (2012). doi:10.1088/1748-0221/7/01/C01051

    Article  Google Scholar 

  37. C. Amole et al., Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap. New J. Phys. 14, 105010 (2012)

    Article  Google Scholar 

  38. C.G. Parthey et al., Improved measurement of the hydrogen 1S2S transition frequency. Phys. Rev. Lett. 107, 203001 (2011)

    Article  ADS  Google Scholar 

  39. G. Gabrielse et al., First measurement of the velocity of slow antihydrogen atoms. Phys. Rev. Lett. 93, (2004)

    Google Scholar 

  40. F. Robicheaux, Simulations of antihydrogen formation. Phys. Rev. A 70, 022510 (2004)

    Article  ADS  Google Scholar 

  41. J. Fajans, L. Friedland, Autoresonant (nonstationary) excitation of pendulums, plutinos, plasmas, and other nonlinear oscillators. Am. J. Phys. 69, 1096 (2001)

    Article  ADS  Google Scholar 

  42. I. Barth, L. Friedland, E. Sarid, A.G. Shagalov, Autoresonant transition in the presence of noise and self-fields. Phys. Rev. Lett. 103, 155001 (2009)

    Article  ADS  Google Scholar 

  43. C. Amole et al., Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production. Phys. Plasmas 20, 043510 (2013). doi:10.1063/1.4801067

    Article  ADS  Google Scholar 

  44. H.F. Hess, Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476 (1986)

    Article  ADS  Google Scholar 

  45. G. Andresen et al., Evaporative cooling of antiprotons to cryogenic temperatures. Phys. Rev. Lett. 105, 013003 (2010)

    Article  ADS  Google Scholar 

  46. G. Andresen et al., Search for trapped antihdyrogen. Phys. Lett. B 695, 95 (2011)

    Article  ADS  Google Scholar 

  47. B.I. Deutch et al., Antihydrogen by positronium-antiproton collisions. Hyp. Int. 44(1–4), 271–286 (1989)

    Article  ADS  Google Scholar 

  48. N. Madsen, Private Commun. (2011)

    Google Scholar 

  49. B.M. Jelenkovic et al., Sympathetically laser-cooled positrons. Nucl. Inst. Meth. B 192, 117127 (2002)

    Article  Google Scholar 

  50. P.H. Donnan et al., A proposal for laser cooling antihydrogen atoms. J. Phys. B 46, 025302 (2013). doi:10.1088/0953-4075/46/2/025302

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the editors, Professors Quint and Vogel, for taking the initiative to prepare this volume and for the hard work of editing it. My many colleagues in PS200, ATHENA, and ALPHA are gratefully acknowledged for outstanding collaboration over the years; their names are to be found in the references. I would also like to thank the CERN AD and injector staff for delivering reliable beam over the years, and the members of the other AD and LEAR experiments, past and present, for creating an extremely stimulating working environment at CERN. The authors work has been supported by the Danish National Research Council (SNF, FNU), the Carlsberg Foundation, and the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Hangst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hangst, J.S. (2014). Fundamental Physics with Antihydrogen. In: Quint, W., Vogel, M. (eds) Fundamental Physics in Particle Traps. Springer Tracts in Modern Physics, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45201-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45201-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45200-0

  • Online ISBN: 978-3-642-45201-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics