Skip to main content

Neuropharmacological Responses from Nerve Cells in Tissue Culture

  • Chapter
Principles of Receptor Research

Part of the book series: Handbook of Psychopharmacology ((SIBN,volume 2))

Abstract

It has been amply demonstrated over the past several years that nervous tissue can maintain and develop a high degree of differentiation in culture. Essentially every region of the neuraxis has been successfully grown in some form of culture, and neural tissue from bird, mouse, rat, and man as well as invertebrate material has proven suitable for in vitro work (Murray, 1971; Nelson, 1974). In this chapter, we will be particularly concerned with electrophysiological responses of nerve (and muscle) cells to iontophoretically applied neurohormones but will also deal with some biochemical effects of neuropharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bunge, R. P., Rees, R., Wood, P., Burton, H., Ko, C.-P.: 1974. Anatomical and physiological observations on synapses formed on isolated autonomic neurons in tissue culture, Brain Res. 66: 401–412.

    Article  Google Scholar 

  • Cohen, M. W.: 1972. The development of neuromuscular connexions in the presence of D-tubocurarine, Brain Res. 41: 457–463.

    Article  PubMed  Google Scholar 

  • Cohen, S. A., Fischbach, G.: 1973. Regulation of muscle acetylcholine sensitivity by muscle activity in cell culture, Science 181: 76–78.

    Article  PubMed  Google Scholar 

  • Crain, S. M.: 1972. Tissue culture model of epileptiform activity, in: Experimental Models of Epilepsy—A Manual for the Laboratory Worker ( D. P. Purpura, J. K. Penry, D. Tower, C. W. Woodbury, R. Walter, eds.), pp. 291–316, Raven Press, New York.

    Google Scholar 

  • Crain, S. M.: 1973. Tissue culture studies of central nervous system maturation, in: Early Development, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 51: 113–131.

    Google Scholar 

  • Crain, S. M., Bornstein, M. B.: 1974. Early onset in inhibitory transactions during synaptogenesis in fetal mouse brain cultures, Brain Res. 68: 351–357.

    Article  PubMed  Google Scholar 

  • Crain, S. M., Peterson, E. R.: 1971. Development of paired explants of fetal spinal cord and adult skeletal muscle during chronic exposure to curare and hemicholinium, In Vitro 6: 373.

    Google Scholar 

  • Crain, S. M., Pollack, I.: 1973. Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca++ deprivation, J. Neurobiol. 4: 321–342.

    Article  PubMed  Google Scholar 

  • Crain, S. M., Bornstein, M. B., Peterson, E. R.: 1968. Maturation of cultured embryonic CNS tissue during chronic exposure to agents which prevent bioelectric activity, Brain Res. 8: 363–372.

    Article  PubMed  Google Scholar 

  • Fischbach, G. D.: 1972. Synapse formation between dissociated nerve and muscle cells in low density cell cultures, Develop. Biol. 28: 407–429.

    Article  PubMed  Google Scholar 

  • Fischbach, G. D., Cohen, S. A.: 1973. The distribution of acetylcholine sensitivity over uninnervated and innervated muscle fibers grown in cell culture, Develop. Biol. 31: 147–162.

    Article  PubMed  Google Scholar 

  • Fischbach, G. D., Dichter, M. A.: 1974. Electrophysiologic and morphologic properties of neurons in dissociated chick spinal cord cell cultures, Develop. Neurol. 37: 100–116.

    Google Scholar 

  • Giller, E. L., Schrier, B. K., Shainberg, A., Fisk, H. R., Nelson, P. G.: 1973. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from the mouse, Science 182: 588–589.

    Article  PubMed  Google Scholar 

  • Giller, E. L., Breakefield, X. O., Christian, C. N., Neale, E. A., Nelson, P. G.: 1974. Expression of neuronal characteristics in culture: Some pros and cons of primary cultures and continuous cell lines, in: Proceedings of the Golgi Centennial Symposium (M. Santini, ed.), Raven Press, New York, in press.

    Google Scholar 

  • Gilman, A., Nirenberg, M.: 1971. Effect of catecholamines on adenosine 3’–5’-cyclic monophosphate concentration of clonal satellite cells of neurons, Proc. Natl. Acad. Sci. 68: 2165–2168.

    Article  PubMed  Google Scholar 

  • Godfrey, E. W., Nelson, P. G., Schrier, B. K., Breuer, A. C., Ransom, B. R.: 1975. Brain Res. (in press).

    Google Scholar 

  • Harris, A. J., Dennis, M. J.: 1970. Acetylcholine sensitivity and distribution on mouse neuroblastoma cells, Science 67: 1253–1255.

    Article  Google Scholar 

  • Harris, A. J., Kuffler, S. W., Dennis, M. J.: 1971. Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog tested by micro-application of acetylcholine, Proc. Roy. Soc. Lond. Ser. B 177: 541–553.

    Article  Google Scholar 

  • Hartzell, H. C., Fambrough, D. M.: 1973. Acetylcholine receptor production and incorporation into membranes of developing muscle fibers, Develop. Biol. 30: 153–165.

    Article  PubMed  Google Scholar 

  • Hosli, E., Hosli, L.: 1971. Acetylcholinesterase in cultured rat spinal cord, Brain Res. 30: 193–197.

    Article  PubMed  Google Scholar 

  • Hosli, E., Meier-Ruge, W., Hosli, L.: 1971. Monoamine-containing neurones in cultures of rat brain stem, Experientia 27: 310.

    Article  PubMed  Google Scholar 

  • Hosli, E., Ljungdahl, A., Hokfelt, T., Hosli, L.: 1972. Spinal cord tissue cultures—A model for autoradiographic studies on uptake of putative neurotransmitters such as glycine and GABA, Experientia 28: 1342–1344.

    Article  PubMed  Google Scholar 

  • Hosli, L., Hosli, E.: 1972. Autoradiographic localization of the uptake of glycine in cultures of rat medulla oblongata, Brain Res. 45: 612–616.

    Article  PubMed  Google Scholar 

  • Hosli, L., Hosli, E., Res, P. G.: 1973a. Nervous tissue culture: A model to study action and uptake of putative neurotransmitters such as amino acids, Brain Res. 62: 597–602.

    Article  PubMed  Google Scholar 

  • Hosli, L., Hosli, E., Res, P. F.: 19736. Electrophysiological and histochemical properties of fetal human spinal cord, in: Dynamics of Degeneration and Growth in Neurones, Wenner-Gren Center International Symposium, Stockholm.

    Google Scholar 

  • Johnson, J. L.: 1972. Glutamic acid as a synaptic transmitter in the nervous system: A review, Brain Res. 37: 1–19.

    Article  PubMed  Google Scholar 

  • Krnjevic, K.: 1974. Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.

    Google Scholar 

  • Krnjevic, K., Schwartz, S.: 1967. Some properties of unresponsive cells in the cerebral cortex, Exp. Brain Res. 3: 206–219.

    Google Scholar 

  • Krnjevic, K., Pumain, R., Renaud, L.: 1971. The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. 215: 247–268.

    PubMed  Google Scholar 

  • Kuffler, S.T.W., Nicholls, J. G.: 1966. The physiology of neuroglial cells, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 57: 1–90.

    Google Scholar 

  • Lasher, R. S.: 1974. The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum, Brain Res. 69: 235–254.

    Article  PubMed  Google Scholar 

  • Murray, M. R.: 1971. Nervous tissues isolated in culture, in: Handbook of Neurochemistry, Vol. 5A ( A. Lajtha, ed.), pp. 373–438, Plenum, New York.

    Google Scholar 

  • Nelson, P. G.: 1973. Electrophysiological studies of normal and neoplastic cells in tissue culture, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 135–160, Plenum, New York.

    Chapter  Google Scholar 

  • Nelson, P. G.: 1975. Nerve and muscle cells in culture, Physiol. Rev. 55: 1–6.

    Article  PubMed  Google Scholar 

  • Nelson, P. G., Peacock, J. H.: 1973. Electrical activity in dissociated cell cultures from fetal mouse cerebellum, Brain Res. 61: 163–174.

    Article  PubMed  Google Scholar 

  • Nelson, P., Ruffner, W., Nirenberg, M.: 1969. Neuronal tumor cells with excitable membranes grown in vitro, Proc. Natl. Acad. Sci. 64: 1004–1010.

    Article  PubMed  Google Scholar 

  • Nelson, P. G., Peacock, J. H., Amano, T.: 1971. Responses of neuroblastoma cells to iontophoretically applied acetylcholine, J. Cell Physiol. 77: 353–362.

    Article  PubMed  Google Scholar 

  • Olson, M. I., Bunge, R. P.: 1973. Anatomical observations on the specificity of synapse formation in tissue culture, Brain Res. 59: 19–33.

    Article  PubMed  Google Scholar 

  • Paul, J.: 1972. Cell and Tissue Culture, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Peacock, J. H., Nelson, P. G.: 1973. Chemosensitivity of mouse neuroblastoma cells in vitro, J. Neurobiol. 4: 363–374.

    Article  PubMed  Google Scholar 

  • Peacock, J. H., McMorris, F. A., Nelson, P. G.: 1973a. Electrical excitability and chemosensitivity of mouse neuroblastoma x mouse or human fibroblast hybrids, Exp. Cell Res. 79: 199–212.

    Article  PubMed  Google Scholar 

  • Peacock, J. H., Nelson, P. G., Goldstone, M. W.: 1973b. Electrophysiologic study of cultured neurons dissociated from spinal cords and dorsal root ganglia of fetal mice, Develop. Biol. 30: 137–152.

    Article  PubMed  Google Scholar 

  • Purves, D., Sakmann, B.: 1974. The effect of contractile activity on fibrillation and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ culture, J. Physiol. 237: 157–182.

    PubMed  Google Scholar 

  • Rall, W., Burke, R. E., Smith, T. G., Nelson, P. G., Frank, K.: 1967. Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons, J. Neurophysiol. 30: 1169–1193.

    PubMed  Google Scholar 

  • Sato, G.: (ed.), 1973. Tissue Culture of the Nervous System, Vol. 1 of Current Topics in Neurobiology, Plenum, New York.

    Google Scholar 

  • Schon, F., Kelly, J. S.: 1974. Autoradiographic localization of [3H]GABA and [H3]glutamate over satellite glial cells, Brain Res. 66: 275–288.

    Article  Google Scholar 

  • Schrier, B. K., Thompson, E. J.: 1974. On the role of glial cells in the mammalian nervous system, J. Biol. Chem. 219: 1769–1780.

    Google Scholar 

  • Schubert, D., Harris, A. J., Heinemann, S., Kidokoro, Y., Patrick, J., Steinbach, J. H.: 1973. Differentiation and interaction of clonal cell lines of nerve and muscle, in: Tissue Culture of the Nervous System ( G. Sato, ed.), pp. 55–86, Plenum, New York.

    Chapter  Google Scholar 

  • Tasaki, I., Chang, J. J.: 1958. Electric response of glia cells in cat brain, Science 128: 1209–1210.

    Article  PubMed  Google Scholar 

  • Wardell, W. M.: 1966. Electrical and pharmacological properties of mammalian neuroglial cells in tissue culture, Proc. Roy. Soc. Lond. Ser. B 165: 326–361.

    Article  Google Scholar 

  • Werman, R.: 1966. Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18: 745–766.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Ransom, B.R., Nelson, P.G. (1975). Neuropharmacological Responses from Nerve Cells in Tissue Culture. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Principles of Receptor Research. Handbook of Psychopharmacology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3168-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3168-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3170-4

  • Online ISBN: 978-1-4684-3168-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics