Skip to main content

Many Body Perturbation Theory for Non-Uniform Electronic Systems

  • Chapter
Elementary Excitations in Solids, Molecules, and Atoms

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 2))

  • 155 Accesses

Abstract

In the now famous papers by P. Hohenberg and W. Kohn [1] and in a sequel by W. Kohn and L.J. Sham [2] use was made of the fact that the total energy of an interacting electron system is a functional of the electronic charge density:

$$E[n(r)]=\int{\upsilon (r)n(r)dr+F[n(r)]}$$
(1)

where υ(r) is the external potential and F is a universal functional of the density. For the exact n(r), E[n(r)] is a minimum relative to variations of n(r) consistent with a variation of υ(r). Unfortunately, for an approximate F = F a the approximate energy functional E a obtained from equation (1) by replacing F[n] with F a[n] does not have to have any relation in particular to E. That is, E a may be greater or smaller or equal to E. An example is the Slater X α scheme [3] in which one can vary α to obtain any E a that one wants. Another fundamental objection is that given an F a there may or may not exist a solution to the Kohn and Sham equations in a region of physical interest. Even when the approximate energy functional has the appropriate properties leading to a n a(r) (there exists a point ñ a(r) such that E a[n] = min), the constraint used by Kohn and Sham that

$$\tilde{n}(r)=\sum\limits_{i}{{{\left| {{{\tilde{\phi }}}_{i}}(r) \right|}^{2}}}N=\int{\tilde{n}(r)}dr$$
(2)

(using the Lagrange multiplier metyhod this constraint leads to the K-S equations upon minimizing the functional [E a[n(r)] − λxn(r)dr] with respect to variations in n compatible with being produced by a variation in the external potential, supposing, of course, that the functional derivative exists) effectively raises the calculated energy even though it does not necessarily ensure N-representability. In principle other N-conserving constraints than (2) could be used.

NAS-NRC Post-Doctoral Associate

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hohenberg, P. and Kohn, W. (1964). Phys. Rev., B136, 864.

    Article  ADS  MathSciNet  Google Scholar 

  2. Kohn, W. and Sham, L.J. (1965). Phys. Rev., A140, 1133.

    Article  ADS  MathSciNet  Google Scholar 

  3. Slater, J.C. (1951). Phys. Rev., 81, 385;

    Article  ADS  MATH  Google Scholar 

  4. Gaspar, R. (1954). Acta Phys. Sci. Hung., 3, 263.

    Article  MATH  MathSciNet  Google Scholar 

  5. Scofield, D.F. (1971). Int. J. Quantum Chem., 5, 489.

    Article  Google Scholar 

  6. Herman, F., Van Dyke, J.P. and Ortenburger, I.B. (1969). Phys. Rev. Lett., 22, 807.

    Article  ADS  Google Scholar 

  7. Ma, S. and Brueckner, K.A. (1968). Phys. Rev., 165, 18.

    Article  ADS  Google Scholar 

  8. Some excellent references: Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many Particle Systems, (McGraw-Hill Book Co., New York);

    Google Scholar 

  9. March, N.H., Young, W.H. and Sampanthar, S. (1967). The Many Body Problem in Quantum Mechanics, ( Cambridge University Press, London);

    Google Scholar 

  10. Hedin, L. Lundquist S. (1969). In Solid State Physics, Vol 23, (eds. Seitz, F. and Turnbull, D), ( Academic Press, New York);

    Google Scholar 

  11. Kumar, K. (1962). Perturbation Theory and The Nuclear Many Body Problem, ( North Holland, Amsterdam);

    Google Scholar 

  12. Pines, D. (1962). The Many Body Problem, (W.A. Benjamin, New York);

    MATH  Google Scholar 

  13. Nozieres, P. (1964). Theory of Interacting Fermi Systems, (W.A. Benjamin, New York);

    MATH  Google Scholar 

  14. Mattuck, R.D. (1967). A Guide to Feynman Diagrams in The Many Body Problem, ( McGraw-Hill Book Co., New York).

    Google Scholar 

  15. Martin, P.C. and Schwinger, J.S. (1959). Phys. Rev., 115, 1342.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Dyson, F.J. (1949). Phys. Rev., 75, 486, 1736.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Brueckner, K.A. (1955). Phys. Rev., 100, 36.

    Article  ADS  MATH  Google Scholar 

  18. Goldstone, J. (1957). Proc. Roy. Soc., A239, 267.

    ADS  MathSciNet  Google Scholar 

  19. Kelly, H.P. (1968). Adv. Theor. Phys., 2, 75.

    Google Scholar 

  20. Kelly, H.P. (1964). Phys. Rev., 8136, 896.

    Article  ADS  Google Scholar 

  21. Huzinaga, S. and Arnau, C. (1970). Phys. Rev., A1, 1285.

    ADS  Google Scholar 

  22. Scofield, D.F., Dutta, N.C. and Dutta, C.M. (1972). Int. J. Quantum Chem., 6, 9.

    Article  Google Scholar 

  23. Miller, J.H. and Kelly, H.P. (1971). Phys. Rev, A3, 578.

    ADS  Google Scholar 

  24. Hartree, D.R. (1957). The Calculation of Atomic Structures, ( John Wiley and Sons, New York).

    MATH  Google Scholar 

  25. Froese, C. (1963). Can. J. Phys., 41, 1895.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Harris, F.E., Kumar, L. and Monkhorst, H.J. (1973). Phys. Rev., B7, 2850.

    ADS  Google Scholar 

  27. Hazelgrove, C.B. (1961). Math. Comp., 15, 323;

    Article  MathSciNet  Google Scholar 

  28. Davis, P.J. and Rabinowitz, P. (1967). Numerical Integration, (Blaisdell Publishing Co., Waltham, Massachusetts).

    MATH  Google Scholar 

  29. Brillouin, L. (1933). Actual, Sci. Ind., No. 71; (1934). Actual. Sci. Ind., No. 159.

    Google Scholar 

  30. Slater, J.C. (1951). Phys. Rev., 81, 385;

    Article  ADS  MATH  Google Scholar 

  31. Gaspar, R. (1954). Acta Phys. Sci. Hung., 3, 263.

    Article  MATH  MathSciNet  Google Scholar 

  32. Graves-Morris, P.R. (ed.) (1973). Padé Approximants, ( Lectures delivered at a Summer School Held at the University of Kent, July 1972, (The Institute of Physics, London ).

    MATH  Google Scholar 

  33. Scofield, D.F. (1972). Phys. Rev. Lett., 29, 811.

    Article  ADS  MathSciNet  Google Scholar 

  34. The material presented here is standard. It may be found in any of the following: Kato, T. (1966). Perturbation Theory for Linear Operators, (Springer-Verlag, New York);

    MATH  Google Scholar 

  35. Reisz, F. and Nagy, B. Sz. (1955). Functional Analysis, ( Frederick Ungar, New York).

    Google Scholar 

  36. A very good source for what follows is: Ball, L.B. (1969). Computational Solutions of Nonlinear Operator Equations, (John Wiley and Sons, New York). Rall has also given a very nice survey of Vainberg’s book in: Anselone, P.M. (1964). Nonlinear Integral Equations, (University of Wisconsin Press, Madison).

    Google Scholar 

  37. Vainberg, M.M. (1964). Variational Methods for The Study of Nonlinear Operators, ( Holden-Day, San Francisco). This book also has a chapter on Newton’s method in Banach spaces by L.V. Kantorovich and G.P. Akilov.

    MATH  Google Scholar 

  38. Zmuidzinas, J.S. (1970). Phys. Rev., B2, 4445.

    ADS  Google Scholar 

  39. Kadanoff, L.P. and Baym, G. (1962). Quantum Statistical Mechanics, (W.A. Benjamin, New York).

    MATH  Google Scholar 

  40. Schneider, B., Taylor, H.S. and Yaris, R. (1970). Phys. Rev., A1, 855.

    ADS  Google Scholar 

  41. Scofield, D.F. Self-Consistent Green’s Function Method for Energy Bands, (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, London

About this chapter

Cite this chapter

Scofield, D.F. (1974). Many Body Perturbation Theory for Non-Uniform Electronic Systems. In: Devreese, J.T., Kunz, A.B., Collins, T.C. (eds) Elementary Excitations in Solids, Molecules, and Atoms. NATO Advanced Study Institutes Series, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2820-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2820-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2822-3

  • Online ISBN: 978-1-4684-2820-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics