Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 33))

  • 132 Accesses

Abstract

In recent years, experimental investigations of vibrational relaxation processes have received increasing attention. Interesting information is obtained from the band shapes observed in infrared and Raman spectroscopy [1, 21. The interpretation of the measured lines is difficult, however, since several physical processes contribute in general to the observed band contours. Line broadening factors are: rotational motion, vibrational dephasing, energy relaxation, and inhomogeneous broadening due to a distribution of vibrational frequencies, e.g. isotopic line splitting. Under certain assumptions it is possible to separate the rotational contribution. The rest is sometimes called the “intrinsic vibrational part” and contains the other line-broadening factors. At the present time, one cannot isolate the different contributions by spectroscopic methods. For instance, the population lifetime of an excited vibrational state was unknown until very recently for any vibrational mode in the liquid state. Similarly, the inhomogeneous part of a spectroscopic line is not known in many cases. As a result, the time constants deduced from spectroscopic band contours are not well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R.G. Gordon, J. Chem. Phys. 40, 1973 (1964);

    Article  ADS  Google Scholar 

  2. R.G. Gordon, J. Chem. Phys. 42, 3658 (1965);

    Article  ADS  Google Scholar 

  3. R.G. Gordon, J. Chem. Phys. 43, 1302 (1965).

    ADS  Google Scholar 

  4. S. Bratos and E. Maréchal, Phys. Rev. A4, 1078 (1971);

    Article  Google Scholar 

  5. F.J. Bartoli and T.A. Litovitz, J. Chem. Phys. 56, 404, 413 (1972);

    Article  ADS  Google Scholar 

  6. G. Döge, Z. Naturforsch. 28a, 919 (1973).

    ADS  Google Scholar 

  7. H.S. Goldberg and P.S. Pershan, J. Chem. Phys. 58, 3816 (1973);

    Article  ADS  Google Scholar 

  8. W.G. Rotschild, G.J. Rosasco and R.C. Livingston, J. Chem. Phys. 59, 5310 (1973).

    Article  Google Scholar 

  9. For a review see A. Laubereau and W. Kaiser, Ann. Rev. Phys. Chem. 26, 83 (1975).

    Article  ADS  Google Scholar 

  10. D. von der Linde, A. Laubereau and W. Kaiser, Phys. Rev. Lett. 26, 955 (1971);

    Google Scholar 

  11. A. Laubereau, Chem. Phys. Lett. 27, 700 (1974).

    Article  Google Scholar 

  12. A. Laubereau, G. Wochner and W. Kaiser, Phys. Rev. A13, 2212 (1976).

    Article  ADS  Google Scholar 

  13. A. Laubereau, D. von der Linde and W. Kaiser, Phys. Rev. Lett. 28, 1162 (1972).

    Article  ADS  Google Scholar 

  14. R.R. Alfano and L.L. Shapiro, Phys. Rev. Lett. 29, 1655 (1972).

    Article  ADS  Google Scholar 

  15. A. Laubereau, K. Kirschner, and W. Kaiser, Opt. Commua. 9, 182 (1973);

    Article  ADS  Google Scholar 

  16. A. Laubereau, G. Kehl, W. Kaiser, Opt. Commun. 11, 74(1974).

    Article  ADS  Google Scholar 

  17. A. Laubereau, A. Seilmeier and W. Kaiser, Chem. Phys. Lett. 36, 232 (1975).

    Article  ADS  Google Scholar 

  18. For a more detailed discussion see A. Laubereau and W. Kaiser in “Chemical and Biochemical Applications of Lasers”, ed. C.B. Moore, vol. 2, Academic Press (New York 1977 ).

    Google Scholar 

  19. S.F. Fischer and A. Laubereau, Chem. Phys. Lett. 35, 6 (1975);

    Article  ADS  Google Scholar 

  20. P.A. Madden and R.M. Lynden-Bell, Chem. Phys. Lett. 38, 163 (1976).

    Article  ADS  Google Scholar 

  21. A. Laubereau, G. Wochner and W. Kaiser, Chem. Phys. in press

    Google Scholar 

  22. S. Bratos, J. Chem. Phys. 63, 3499 (1975).

    Article  ADS  Google Scholar 

  23. W.G. Rotschild, J. Chem. Phys. 65, 455 (1976).

    Article  Google Scholar 

  24. W.G. Rotschild, ibid 65, 1958 (1976).

    Google Scholar 

  25. G.C. Pimentel and A.L. McClellan, “The Hydrogen Bond”, Freeman (San Francisco, 1960); Ann. Rev. Phys. Chem. 22, 347 (1971).

    Article  ADS  Google Scholar 

  26. N. Koizumi, J. Chem. Phys. 27, 625;

    Google Scholar 

  27. H. Fellner-Feldegg, J. Phys. Chem. 73, 616 (1969).

    Article  Google Scholar 

  28. K. Spanner, A. Laubereau and W. Kaiser, Chem. Phys. Lett. 44, 88 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Laubereau, A., Kaiser, W. (1978). Picosecond Laser Techniques. In: Dupuy, J., Dianoux, A.J. (eds) Microscopic Structure and Dynamics of Liquids. NATO Advanced Study Institutes Series, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0859-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0859-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0861-4

  • Online ISBN: 978-1-4684-0859-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics