Skip to main content

Abstract

The interaction of molecules with ultrashort laser pulses results in the preparation of nonstationary quantum states and may trigger photophysical and photochemical processes. As a result, measurements of molecular observables explicitly depend on time, thus reflecting the underlying dynamics. This chapter presents a theoretical description of a so-called pump-probe scheme that involves the preparation and detection of the molecular motion. As a particular example, the experimental realization of transient absorption spectroscopy is described. Utilizing this technique, a photochemical reaction proceeding differently in dependence on the solvent environment is discussed, illustrating the versatility of pump-probe measurements for investigating the dynamics of chemical reactions in real time. Further topical experimental developments in the ultrafast spectroscopy of molecular systems are outlined. These recent approaches comprise coherent two-dimensional spectroscopy, X-ray and electron diffraction, and also the possibility of quantum control with shaped laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Conference proceedings Ultrafast Phenomena, vol. X: Springer Ser. Chem. Phys. 62 (1996)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XI: Springer Ser. Chem. Phys. 63 (1998)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XII: Springer Ser. Chem. Phys. 66 (2001)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XIII: Springer Ser. Chem. Phys. 71 (2003)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XIV: Springer Ser. Chem. Phys. 79 (2005)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XV: Springer Ser. Chem. Phys. 88 (2007)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XVI: Springer Ser. Chem. Phys. 92 (2009)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XVII: Oxford University Press, New York (2011)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XVIII: EPJ Web Conf. 41 (2013)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XIX: Springer Proc. Phys. 162 (2015)

    Google Scholar 

  • Conference proceedings Ultrafast Phenomena, vol. XX: OSA Technical Digest (online) https://www.osapublishing.org/conference.cfm?meetingid=29&yr=2016

  • Garraway, B.M., Suominen, K.-A.: Rep. Prog. Phys. 58, 365 (1995)

    ADS  Google Scholar 

  • Yeazell, J., Uzer, T. (eds.): The Physics and Chemistry of Wave Packets. Wiley, New York (2000)

    Google Scholar 

  • Manz, J.: Molecular wavepacket dynamics: theory for experiments 1926-1966. In: Sundström, V., Forsén, S., Eberg, U., Hjalmarsson, H. (eds.) Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution, pp. 80–319. Imperial College Press, London (1996)

    Google Scholar 

  • Schaupp, T., Albert, J., Engel, V.: Eur. Phys. J. B 91, 97 (2018)

    ADS  Google Scholar 

  • Rose, T.S., Rosker, M.J., Zewail, A.H.: J. Chem. Phys. 88, 6672 (1988)

    ADS  Google Scholar 

  • Bowman, R.M., Dantus, M., Zewail, A.H.: Chem. Phys. Lett. 161, 297 (1989)

    ADS  Google Scholar 

  • Baumert, T., Gerber, G.: Adv. Atom. Mol. Phys. 35, 163 (1995)

    ADS  Google Scholar 

  • Fischer, I., Villeneuve, D.M., Vrakking, M.J.J., Stolow, A.: J. Chem. Phys. 102, 5566 (1995)

    ADS  Google Scholar 

  • Materny, A., et al.: Appl. Phys. B 71, 299 (2000)

    ADS  Google Scholar 

  • Seel, M., Domcke, W.: J. Chem. Phys. 95, 7806 (1991)

    ADS  Google Scholar 

  • Meier, C., Engel, V.: Chem. Phys. Lett. 212, 691 (1993)

    ADS  Google Scholar 

  • Assion, A., et al.: Phys. Rev. A 54, R4605 (1996)

    ADS  Google Scholar 

  • Wollenhaupt, M., Engel, V., Baumert, T.: Annu. Rev. Phys. Chem. 56, 25 (2005)

    ADS  Google Scholar 

  • Tannor, D.J.: Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Books, Sausalito (2007)

    Google Scholar 

  • Fleming, G.R.: Chemical Applications of Ultrafast Spectroscopy. Oxford University Press, New York (1986)

    Google Scholar 

  • Simon, J.D.: Ultrafast Dynamics of Chemical Systems. Springer Science & Business Media, Dordrecht (1994)

    Google Scholar 

  • Mukamel, S.: Principles of Nonlinear Optical Spectroscopy. Oxford University Press, New York (1995)

    Google Scholar 

  • Schmuttenmaer, C.A.: Chem. Rev. 104, 1759 (2004)

    Google Scholar 

  • Knorr, J., et al.: Nat. Comm. 7, 12968 (2016)

    ADS  Google Scholar 

  • Mukamel, S.: Annu. Rev. Phys. Chem. 51, 691 (2000)

    ADS  Google Scholar 

  • Jonas, D.M.: Annu. Rev. Phys. Chem. 54, 425 (2003)

    ADS  Google Scholar 

  • Cho, M.: Two-Dimensional Optical Spectroscopy. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  • Fayer, M.: Annu. Rev. Phys. Chem. 60, 21 (2009)

    ADS  Google Scholar 

  • Hamm, P., Zanni, M.: Concepts and Methods of 2D Infrared Spectroscopy. Cambridge University Press, New York (2011)

    Google Scholar 

  • Fuller, F.D., Ogilvie, J.P.: Annu. Rev. Phys. Chem. 66, 667 (2015)

    ADS  Google Scholar 

  • Nuernberger, P., Ruetzel, S., Brixner, T.: Angew. Chem. Int. Ed. 54, 11368 (2015)

    Google Scholar 

  • Woerner, M., et al.: New J. Phys. 15, 025039 (2013)

    ADS  Google Scholar 

  • Tseng, C., Matsika, S., Weinacht, T.C.: Opt. Express 17, 18788 (2009)

    ADS  Google Scholar 

  • Selig, U., et al.: Opt. Lett. 35, 4178 (2010)

    ADS  Google Scholar 

  • West, B.A., Moran, A.M.: J. Phys. Chem. Lett. 3, 2575 (2012)

    Google Scholar 

  • Krebs, N., Pugliesi, I., Hauer, J., Riedle, E.: New J. Phys. 15, 085016 (2013)

    ADS  Google Scholar 

  • Consani, C., Auböck, G., van Mourik, F., Chergui, M.: Science 339, 1586 (2013)

    ADS  Google Scholar 

  • Kraack, J.P.: Top. Curr. Chem. 375, 86 (2017)

    Google Scholar 

  • Brixner, T., et al.: Nature 434, 625 (2005)

    ADS  Google Scholar 

  • Scholes, G.D., et al.: Nature 543, 647 (2017)

    ADS  Google Scholar 

  • Pfeifer, T., Spielmann, C., Gerber, G.: Rep. Prog. Phys. 69, 443 (2006)

    ADS  Google Scholar 

  • Bressler, C., Chergui, M.: Annu. Rev. Phys. Chem. 61, 263 (2010)

    Google Scholar 

  • Schoenlein, R.W., Boutet, S., Minitti, M.P., Dunne, A.M.: Appl. Sci. 7, 850 (2017)

    Google Scholar 

  • Barty, A., Küpper, J., Chapman, H.N.: Annu. Rev. Phys. Chem. 64, 415 (2013)

    ADS  Google Scholar 

  • Krausz, F., Ivanov, M.: Rev. Mod. Phys. 81, 163 (2009)

    ADS  Google Scholar 

  • Kraus, P.M., et al.: Nat. Rev. Chem. 2, 82 (2018)

    Google Scholar 

  • Ramasesha, K., Leone, S.R., Neumark, D.M.: Annu. Rev. Phys. Chem. 67, 41 (2016)

    ADS  Google Scholar 

  • Wernet, P., et al.: Nature 520, 78 (2015)

    ADS  Google Scholar 

  • Deb, S., Weber, P.M.: Annu. Rev. Phys. Chem. 62, 19 (2011)

    ADS  Google Scholar 

  • Petrović, V.S., et al.: Phys. Rev. Lett. 108, 253006 (2012)

    ADS  Google Scholar 

  • Attar, A.R., et al.: Science 356, 54 (2017)

    ADS  Google Scholar 

  • Minitti, M.P., et al.: Phys. Rev. Lett. 114, 255501 (2015)

    ADS  MathSciNet  Google Scholar 

  • Zewail, A.H.: Annu. Rev. Phys. Chem. 57, 65 (2006)

    ADS  Google Scholar 

  • Miller, R.J.D.: Annu. Rev. Phys. Chem. 65, 583 (2014)

    ADS  Google Scholar 

  • Rice, S.A., Zhao, M.: Optical Control of Molecular Dynamics. Wiley, New York (2000)

    Google Scholar 

  • Shapiro, M., Brumer, P.: Principles of the Quantum Control of Molecular Processes. Wiley, New York (2003)

    MATH  Google Scholar 

  • Wollenhaupt, M., Assion, A., Baumert, T.: Femtosecond laser pulses: linear properties, manipulation, generation and measurement. In: Träger, F. (ed.) Springer Handbook of Lasers and Optics, pp. 937–983. Springer, New York (2007)

    Google Scholar 

  • Weiner, A.M.: Opt. Commun. 284, 3669 (2011)

    ADS  Google Scholar 

  • Judson, R.S., Rabitz, H.: Phys. Rev. Lett. 68, 1500 (1992)

    ADS  Google Scholar 

  • Brixner, T., Gerber, G.: ChemPhysChem 4, 418 (2003)

    Google Scholar 

  • Dantus, M., Lozovoy, V.V.: Chem. Rev. 104, 1813 (2004)

    Google Scholar 

  • Nuernberger, P., Vogt, G., Brixner, T., Gerber, G.: Phys. Chem. Chem. Phys. 9, 2470 (2007)

    Google Scholar 

  • Brif, C., Chakrabarti, R., Rabitz, H.: New J. Phys. 12, 075008 (2010)

    ADS  Google Scholar 

  • Glaser, S.J., et al.: Eur. Phys. J. D 69, 279 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Engel, V., Nuernberger, P. (2023). Time Resolved Molecular Dynamics. In: Drake, G.W.F. (eds) Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-73893-8_37

Download citation

Publish with us

Policies and ethics