Skip to main content

Antioxidant Defenses in the Vascular Wall

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

  • 405 Accesses

Abstract

Oxidative stress, defined as a disturbance in the pro-oxidant to anti-oxidant balance in favor of the former (1), may lead to oxidative damage, depending on its extent and duration, and the type of oxidant(s) involved. Within the vascular wall both radicals (i.e., one electron) and nucleophilic (two electron) oxidants are likely produced and contribute to oxidative stress (see Chapter 2). This chapter describes antioxidant defenses in the vascular wall in atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sies H. Oxidative stress: introductory remarks. In: Sies H, ed. Oxidative Stress. New York: Academic, 1985:1.

    Google Scholar 

  2. Halliwell B. How to characterize a biological antioxidant. Free Rad Res Comm. 1990;9:1.

    Article  CAS  Google Scholar 

  3. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989;320:915.

    Article  PubMed  CAS  Google Scholar 

  4. Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Rad Biol Med. 1996;20:707.

    Article  PubMed  CAS  Google Scholar 

  5. Bowry VW, Stocker R. Tocopherol-mediated peroxidation. The pro-oxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J Am Chem Soc. 1993;115:6029.

    Article  CAS  Google Scholar 

  6. Ingold KU, Bowry VW, Stocker R, Walling C. Autoxidation of lipids and antioxidation by α—tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids. The unrecognized consequences of lipid particle size as exemplified by the oxidation of human low density lipoprotein. Proc Natl Acad Sci USA. 1993;90:45.

    Article  PubMed  CAS  Google Scholar 

  7. Witting PK, Upston JM, Stocker R. The molecular action of α—tocopherol in lipoprotein lipid peroxidation: pro-and antioxidant activity of vitamin E in complex heterogeneous lipid emulsions. In: Quinn P, Kagan V, eds. Subcellular Biochemistry: Fat-Soluble Vitamins. London: Plenum, 1998:345.

    Google Scholar 

  8. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992;288:341.

    PubMed  CAS  Google Scholar 

  9. Bowry VW, Mohr D, Cleary J, Stocker R. Prevention of tocopherol-mediated peroxidation of ubiquinol-10-free human low density lipoprotein. J Biol Chem. 1995;270:5756.

    Article  PubMed  CAS  Google Scholar 

  10. Neuzil J, Thomas SR, Stocker R. Requirement for, promotion, or inhibition by α—tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Rad Biol Med 1997;22:57.

    Article  PubMed  CAS  Google Scholar 

  11. Mukai K, Sawada K, Kohno Y, Terao J. Kinetic study of the prooxidant effect of tocopherol. Hydrogen abstraction from lipid hydroperoxides by tocopheroxyls in solution. Lipids. 1993;28:747.

    Article  CAS  Google Scholar 

  12. Neuzil J, Stocker R. Free and albumin-bound bilirubin is an efficient co-antioxidant for α—tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem. 1994;269:16712.

    PubMed  CAS  Google Scholar 

  13. Witting PK, Westerlund C, Stocker R. A rapid and simple screening test for potential inhibitors of tocopherol-mediated peroxidation of LDL lipids. J Lipid Res. 1996;37:853.

    PubMed  CAS  Google Scholar 

  14. Thomas SR, Witting PK, Stocker R. 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for α—tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem. 1996;271:32714.

    Article  PubMed  CAS  Google Scholar 

  15. Neuzil J, Witting PK, Stocker R. α—Tocopheryl hydroquinone is an efficient multifunctional inhibitor of radical-initiated oxidation of low-density lipoprotein lipids. Proc Natl Acad Sci USA. 1997;94:7885.

    Article  PubMed  CAS  Google Scholar 

  16. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in fasted human plasma. Proc Natl Acad Sci USA. 1992;89:10316.

    Article  PubMed  CAS  Google Scholar 

  17. Mohr D, Stocker R: Radical-mediated oxidation of isolated human very low density lipoprotein. Arterioscl Thromb. 1994; 14:1186.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas SR, Neuzil J, Mohr D, Stocker R. Co-antioxidants make α—tocopherol an efficient antioxidant for LDL. Am J Clin Nutr. 1995;62:1357S.

    PubMed  CAS  Google Scholar 

  19. Mohr D, Umeda Y, Redgrave TG, Stocker R. Antioxidant defenses in rat intestine and mesenteric lymph. Redox Report. 1998;in press.

    Google Scholar 

  20. Frei B, Stocker R, Ames BN. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA. 1988;85:9748.

    Article  PubMed  CAS  Google Scholar 

  21. Dabbagh AJ, Frei B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J Clin Invest. 1995;96:1958.

    Article  PubMed  CAS  Google Scholar 

  22. Halliwell B, Gutteridge JMC. The antioxidants of human extracellular fluids. Arch Biochem Biophys. 1990;280:1.

    Article  PubMed  CAS  Google Scholar 

  23. Stocker R, Frei B. Endogenous antioxidant defenses in human blood plasma. In: Sies H, ed. Oxidative stress: Oxidants and antioxidants. London: Academic Press, 1991:213–243.

    Google Scholar 

  24. Smith EB. The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res. 1974;12:1.

    PubMed  CAS  Google Scholar 

  25. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C. Purification from pig liver of a protein with protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidyl-choline liposomes. Biochim Biophys Acta. 1982;710:197.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas JP, Geiger PG, Maiorino M, Ursini F, Girotti AW. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim Biophys Acta. 1990;1045:252.

    Article  PubMed  CAS  Google Scholar 

  27. Sattler W, Maiorino M, Stocker R. Reduction of HDL-and LDL-associated cholesterylester-and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Arch Biochem Biophys. 1994;309:214.

    Article  PubMed  CAS  Google Scholar 

  28. Garner B, Waldeck AR, Witting PK, Rye K-A, Stocker R. Oxidation of high density lipoproteins. II. Evidence for direct reduction of HDL lipid hydroperoxides by methionine residues of apolipoproteins AI and All. J Biol Chem. 1998;273:6088.

    Article  PubMed  CAS  Google Scholar 

  29. Mashima R, Yamamoto Y, Yoshimura S. Reduction of phosphatidylcholine hydroperoxide by apolipoprotein A-I: purification of the hydroperoxide-reducing proteins from human blood plasma J Lipid Res. 1998;39:1133.

    PubMed  CAS  Google Scholar 

  30. Sattler W, Christison JK, Stocker R: Cholesterylester hydroperoxide reducing activity associated with isolated high-and low-density lipoproteins. Free Rad Biol Med. 1995; 18:421.

    Article  PubMed  CAS  Google Scholar 

  31. Christison JK, Karjalainen A, Brauman J, Bygrave F, Stocker R. Rapid reduction and removal of HDL-but not LDL-associated cholesterylester hydroperoxides by in situ perfused rat liver. Biochem J. 1996;314:739.

    PubMed  CAS  Google Scholar 

  32. Nakamura H, Vaage J, Vaine G, Padilla CA, Björnstedt M, Holmgren A. Measurement of plasma glutaredoxin and thioredoxin in healthy volunteers and during open-heart surgery. Free Rad Biol Med. 1998;24:1176.

    Article  PubMed  CAS  Google Scholar 

  33. Björnstedt M, Hamberg M, Kumar S, Xue J, Holmgren A. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem. 1995;270:1761.

    Article  Google Scholar 

  34. Strålin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular Superoxide dismutase. Arterioscl Thromb Vasc Biol. 1995;15:2032.

    Article  PubMed  Google Scholar 

  35. Luoma JS, Strålin P, Marklund SL, Hiltunen TP, Sarkioja T, Ylä-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol. 1998;18:157.

    Article  PubMed  CAS  Google Scholar 

  36. Oury TD, Day BJ, Crapo JD. Extracellular Superoxide dismutase in vessels and airways of humans and baboons. Free Rad Biol Med. 1996;20:957.

    Article  PubMed  CAS  Google Scholar 

  37. Abrahamsson T, Brandt U, Marklund SL, Sjoqvist PO. Vascular bound recombinant extracellular Superoxide dismutase type C protects against the detrimental effects of Superoxide radicals on endothelium-dependent arterial relaxation. circ Res. 1992;70:264.

    Article  PubMed  CAS  Google Scholar 

  38. Lynch SM, Frei B, Morrow JD, et al: Vascular Superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol. 1997; 17:2975.

    Article  PubMed  CAS  Google Scholar 

  39. van Hinsburg VWM, Scheffer M, Havekes L, Kempen HJM. Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochim Biophys Acta. 1986;878:49.

    Article  Google Scholar 

  40. Ehrenwald E, Chisolm GM, Fox PL: Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994; 93:1493.

    Article  PubMed  CAS  Google Scholar 

  41. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94:437.

    Article  PubMed  CAS  Google Scholar 

  42. Hazell LJ, Arnold L, Flowers D, Waeg G, Malle E, Stocker R. Presence of hypochloritemodified proteins in human atherosclerotic lesions. J Clin Invest. 1996;97:1535.

    Article  PubMed  CAS  Google Scholar 

  43. Winterbourn CC. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985;840:204.

    Article  PubMed  CAS  Google Scholar 

  44. Hu ML, Louie S, Cross CE, Motchnik P, Halliwell B. Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med. 1993;121:257.

    PubMed  CAS  Google Scholar 

  45. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA. 1989;86:6377.

    Article  PubMed  CAS  Google Scholar 

  46. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature. 1979;278:737.

    Article  PubMed  CAS  Google Scholar 

  47. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acidprovides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78:6858.

    Article  PubMed  CAS  Google Scholar 

  48. Christen S, Peterhans E, Stocker R. Antioxidant activities of some tryptophan metabolites: Possible implication for inflammatory diseases. Proc Natl Acad Sci USA. 1990;87:2506.

    Article  PubMed  CAS  Google Scholar 

  49. Christen S, Thomas SR, Garner B, Stocker R. Inhibition by interferon-g of human mononuclear cell-mediated low density lipoprotein oxidation. Participation of tryptophan metabolism along the kynurenine pathway. J Clin Invest. 1994;93:2149.

    Article  PubMed  CAS  Google Scholar 

  50. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043.

    Article  PubMed  CAS  Google Scholar 

  51. Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin bound bilirubin. Proc Natl Acad Sci USA. 1987;84:5918.

    Article  PubMed  CAS  Google Scholar 

  52. Witting PK, Bowry VW, Stocker R. Inverse deuterium kinetic isotope effect for peroxidation in human low-density lipoprotein (LDL): a simple test for tocopherol-mediated peroxidation of LDL lipids. FEBS Lett. 1995;375:45.

    Article  PubMed  CAS  Google Scholar 

  53. Cooney RV, Franke AA, Harwood PJ, Hatch-Pigott V, Custer LJ, Mordan LJ. g-Tocopherol detoxification of nitrogen dioxide: superiority to α—tocopherol. Proc Natl Acad Sci USA. 1993;90:1771.

    Article  PubMed  CAS  Google Scholar 

  54. Stocker R, Bowry VW, Frei B. Ubiquino1-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α—tocopherol. Proc Natl Acad Sci USA. 1991;88:1646.

    Article  PubMed  CAS  Google Scholar 

  55. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta. 1992;1126:247.

    Article  PubMed  CAS  Google Scholar 

  56. Thomas SR, Neuzil J, Stocker R: Co-supplementation with coenzyme Q prevents the prooxidant effect of α—tocopherol and increases the resistance of low-density lipoprotein towards transition metal-dependent oxidation initiation. Arterioscl Thromb Vase Biol. 1996; 16:687.

    Article  CAS  Google Scholar 

  57. Mukai K, Morimoto H, Kikuchi S, Nagaoka S: Kinetic study of free-radical-scavenging action of biological hydroquinones (reduced forms of ubiquinone, vitamin K and tocopherol quinone) in solution. Biochim Biophys Acta. 1993; 1157:313.

    Article  PubMed  CAS  Google Scholar 

  58. Suarna C, Dean RT, May J, Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α—tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995;15:1616.

    Article  PubMed  CAS  Google Scholar 

  59. Carpenter KL, Cheeseman KH, van der Veen C, Taylor SE, Walker MK, Mitchinson MJ. Depletion of alpha-tocopherol in human atherosclerotic lesions. Free Rad Res. 1995;23:549.

    Article  CAS  Google Scholar 

  60. Killion SL, Hunter GC, Eskelson CD, et al. Vitamin E levels in human atherosclerotic plaque: the influence of risk factors. Atherosclerosis. 1996;126:289.

    Article  PubMed  CAS  Google Scholar 

  61. Guyton JR, Klemp KF. Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta. Arterioscler Thromb. 1994;14:1305.

    Article  PubMed  CAS  Google Scholar 

  62. Ylä-Herttuala S. Biochemistry of the arterial wall in developing atherosclerosis. Ann NY Acad Sci. 1991;623:40.

    Article  PubMed  Google Scholar 

  63. Lundberg B. Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis. 1985;1985:93.

    Article  Google Scholar 

  64. Cignarella A, Brennhausen B, von Eckardstein A, Assmann G, Cullen P. Differential effects of lovastatin on the trafficking of endogenous and lipoprotein-derived cholesterol in human monocyte-derived macrophages. Arterioscl Thromb Vasc Biol. 1998;18:1322.

    Article  PubMed  CAS  Google Scholar 

  65. Frank JS, Fogelman AM. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultrα-rapid freezing and freeze-etching. J Lipid Res. 1989;30:967.

    PubMed  CAS  Google Scholar 

  66. Nievelstein PFEM, Fogelman AM, Mottino G, Frank JS. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscl Thromb. 1991; 11:1795.

    Article  PubMed  CAS  Google Scholar 

  67. Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M: Prelesion events in atherogenesis. Accumulation of extracellular cholesterol-rich lipospomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol. 1986; 123:109.

    PubMed  CAS  Google Scholar 

  68. Chao F-F, Amende LM, Blanchette-Mackie EJ, et al. Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas. Am J Pathol. 1988;131:73.

    PubMed  CAS  Google Scholar 

  69. Chao F-F, Blanchette-Mackie EJ, Chen Y-J, et al. Characterization of two unique cholesterolrich lipid particles isolated from human atherosclerotic lesions. Am J Pathol. 1990;136:169.

    PubMed  CAS  Google Scholar 

  70. Lapenna D, de Gioia S, Ciofani G, et al. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation. 1998;97:1930.

    Article  PubMed  CAS  Google Scholar 

  71. Del Boccio G, Lapenna D, Porreca E, et al. Aortic antioxidant defense mechanisms: timerelated changes in cholesterol-fed rabbits. Atherosclerosis. 1990;81:127.

    Article  PubMed  Google Scholar 

  72. Godin DV, Garnett ME, Cheng KM, Nichols CR: Sex-related alterations in antioxidant status and susceptibility to atherosclerosis in Japanese quail. Can J Cardiol. 1995; 11:945.

    PubMed  CAS  Google Scholar 

  73. de Haan JB, Bladier C, Griffiths P, et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpxl, show increased susceptibility to the oxidative stressinduced agents paraquat and hydrogen peroxide. J Biol Chem. 1998;273:22528.

    Article  PubMed  Google Scholar 

  74. Beckman JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosine in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994;375:81.

    Article  Google Scholar 

  75. Leeuwenburgh C, Hardy MM, Hazen SL, et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem. 1997;272:1433.

    Article  PubMed  CAS  Google Scholar 

  76. Tribble DL, Gong EL, Leeuwenburgh C, et al: Fatty streak formation in fat-fed mice expressing human copper-zinc Superoxide dismutase. Arterioscler Thromb Vasc Biol. 1997; 17:1734.

    Article  PubMed  CAS  Google Scholar 

  77. Kanner J, Hard S, Granit R. Nitric oxide as an antioxidant. Arch Biochem Biophys. 1991;289:130.

    Article  PubMed  CAS  Google Scholar 

  78. Kanner J, Harel S, Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids. 1992;27:46.

    Article  PubMed  CAS  Google Scholar 

  79. Jessup W, Mohr D, Gieseg SP, Dean RT, Stocker R. The participation of nitric oxide in cell free-and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta. 1992;1180:73.

    Article  PubMed  CAS  Google Scholar 

  80. Yates MT, Lambert LE, Whitten JP, et al. A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages. FEBS Lett. 1992;309:135.

    Article  PubMed  CAS  Google Scholar 

  81. Jessup W, Dean RT. Autoinhibition of murine macrophage-mediated oxidation of low-density lipoprotein by nitric oxide synthesis. Atherosclerosis. 1993;101:145.

    Article  PubMed  CAS  Google Scholar 

  82. Jessup W. Cellular modification of low-density lipoproteins. Biochem Soc Trans. 1993;21:321.

    PubMed  CAS  Google Scholar 

  83. Darley-Usmar VM, Hogg N, O’Leary VJ, Wilson MT, Moncada S: The simultaneous generation of Superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Rad Res Comm. 1992; 17:9.

    Article  CAS  Google Scholar 

  84. Mackness MI, Abbott C, Arrol S, Durrington PN. The role of high-density lipoprotein and lipid-soluble antioxidant vitamins in inhibiting low-density lipoprotein oxidation. Biochem J. 1993;294:829.

    PubMed  CAS  Google Scholar 

  85. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein [published erratum appears in FEBS Lett 1991 Nov 4;292(1-2):307]. FEBS Lett. 1991;286:152.

    Article  PubMed  CAS  Google Scholar 

  86. Mackness MI, Arrol S, Abbott C, Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis. 1993;104:129.

    Article  PubMed  CAS  Google Scholar 

  87. Watson AD, Berliner JA, Hama SY, et al. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995;96:2882.

    Article  PubMed  CAS  Google Scholar 

  88. Van Lenten BJ, Hama SY, de Beer FC, et al. Anti-inflammatory HDL becomes proinflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest. 1995;96:2758.

    Article  PubMed  Google Scholar 

  89. Mackness MI, Mackness B, Arrol S, Wood G, Bhatnagar D, Durrington PN. Presence of paraoxonase in human interstitial fluid. FEBS Lett. 1997;416:377.

    Article  PubMed  CAS  Google Scholar 

  90. Shih DM, Gu L, Xia Y-R, et al. Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature. 1998;394:284.

    Article  PubMed  CAS  Google Scholar 

  91. Vile GF, Basu-Modak S, Waltner C, Tyrrell RM. Herne oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts. Proc Natl Acad Sci USA. 1994;91:2607.

    Article  PubMed  CAS  Google Scholar 

  92. Wang JJ, Lee TS, Lee FY, Pai RC, Chau LY. Expression of heme oxygenase-1 in atherosclerotic lesions. Am J Pathol. 1998;152:711.

    PubMed  CAS  Google Scholar 

  93. Stocker R. Induction of haem oxygenase as a defense against oxidative stress. Free Rad Res Comm. 1990;9:101.

    Article  CAS  Google Scholar 

  94. Balla G, Jacob HS, Balla J, et al. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267:18148.

    PubMed  CAS  Google Scholar 

  95. Vile GF, Tyrrell RM. Oxidative stress resulting from ultraviolet A irradiation of human skin fibroblasts leads to a heme oxygenase-dependent increase in ferritin. J Biol Chem. 1993;268:14678.

    PubMed  CAS  Google Scholar 

  96. Schwertner HA, Jackson WG, Tolan G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin Chem. 1994;40:18.

    PubMed  CAS  Google Scholar 

  97. Hopkins PN, Wu LL, Hunt SC, James BC, Vincent GM, Williams RR. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler Thromb Vasc Biol. 1996;16:250.

    Article  PubMed  CAS  Google Scholar 

  98. Hansson GK, Holm J, Jonasson L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am J Pathol. 1989;135:169.

    PubMed  CAS  Google Scholar 

  99. Offermann MK, Medford RM. Antioxidants and atherosclerosis: a molecular perspective. Heart Disease and Stroke. 1994;3:52.

    PubMed  CAS  Google Scholar 

  100. Willis GC, Fishman S. Ascorbic acid content of human arterial tissue. Can M A J. 1955;72:500.

    CAS  Google Scholar 

  101. Upston JM, Neuzil J, Witting PK, Alleva R, Stocker R. 15-Lipoxygenase-induced enzymic oxidation of low density lipoprotein associated free fatty acids stimulates nonenzymic, α—tocopherol-mediated peroxidation of cholesteryl esters.J Biol Chem. 1997;272:30067.

    Article  PubMed  CAS  Google Scholar 

  102. Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, Stocker R. Oxidation of high density lipoproteins. I. Formation of methionine sulfoxide in apolipoproteins AI and AII is an early event that correlates with with lipid peroxidation and can be enhanced by α—tocopherol. J Biol Chem. 1998;273:6080.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stocker, R. (2000). Antioxidant Defenses in the Vascular Wall. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics