Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

Thyroid neoplasms and thyroid enlargement result from the preferential growth (benign), invasion, and/or metastases (malignant) of either follicular or parafollicular cells in the thyroid gland. By histological examination at autopsy and by sensitive localization procedures such as ultrasound, about 50% of persons have thyroid tumors [1,2]. Although most thyroid tumors are benign, thyroid cancer has been documented at postmortem examinations in 13% of person in Minnesota and up to 28% of Japanese in Hawaii [3,4]. Most of these tumors are occult and of little clinical consequence. Clinically appreciable enlarged thyroid glands, however, occur in about 4% of the population in the United States and are more common in areas of endemic goiter [5]. Diffuse and nodular hyperplasia of the thyroid gland with or without hyperfunction (hyperthyroidism) is also a relatively common clinical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mortenson JD, Wooler LB, Bennett WA: Gross and microscopic findings in clinically normal thyroid glands. J Clin Endocrinol Metab 15:1270–1280, 1955.

    Google Scholar 

  2. Stark DS, Clark OH, Gooding GAW, Moss AA: High-resolution ultrasonography and computed tomography of thyroid lesions in patients with hyperparathyroidism. Surgery 94:863–868, 1983.

    PubMed  CAS  Google Scholar 

  3. Nishiyama RH, Ludwig GK, Thompson NW: The prevalence of small papillary thyroid carcinomas in 100 consecutive necropsies in an American population. In: Nishiyama RH, Ludwig GK, Thompson NW, De Groot LJ (eds): Associated Thyroid Carcinoma. Grune & Stratton, New York, 1976, pp 123–125.

    Google Scholar 

  4. Fukunaga FT, Yatani R: Geographic pathology of occult thyroid carcinomas. Cancer 36:1095–1099, 1975.

    PubMed  CAS  Google Scholar 

  5. Greenspan FS: Medical treatment of nodular goiters. In: Greenspan FS, Clark OH (eds): Endocrine Surgery of the Thyroid and Parathyroid Glands. CV Mosby, St. Louis, 1985, pp 35–55.

    Google Scholar 

  6. Culter SJ, Young JL (eds): Third National Cancer Survey incidence data. National Cancer Institute. Monograph No. 41. Department of Health Education and Welfare (NIH), Washington DC, 1975.

    Google Scholar 

  7. Clark OH: Thyroid nodules and thyroid cancer. In: Clark OH, Clark OH (eds): Endocrine Surgery of the Thyroid and Parathyroid Glands. CV Mosby, St. Louis, 1985, pp 56–90.

    Google Scholar 

  8. Wahner HW, Cuello C, Correa P, Uribe LF, Gaitan E: Thyroid carcinoma in an endemic goiter area, Cali, Columbia. Am J Med 40:58–66, 1966.

    PubMed  CAS  Google Scholar 

  9. Vigneri R: Studies on the goiter endemia in Sicily. J Endocrinol Invest 11:831–843, 1988.

    PubMed  CAS  Google Scholar 

  10. Beierwaltes WH: Iodine and lymphocytic thyroiditis. Bull All India Ins Med Sci 3: 145–151, 1969.

    Google Scholar 

  11. Clark OH: Excess iodine intake and thyroid function and growth. Thyroid 1:69–72, 1990.

    PubMed  CAS  Google Scholar 

  12. Block MA, Horn RC, Miller JM, et al.: Familial medullary carcinoma of the thyroid. Ann Surg 166:403–411, 1967.

    PubMed  CAS  Google Scholar 

  13. Stoffer SS, Van Dyke DL, Bach JV, et al.: Familial papillary carcinoma of the thyroid. Am J Med Genet 25:775–783, 1986.

    PubMed  CAS  Google Scholar 

  14. Favus MJ, Schneider AB, Stachura ME, et al.: Thyroid cancer occuring as a late consequence of head and neck irradiation. Evaluation of 1056 patients. N Engl J Med 294:1019–1025, 1976.

    PubMed  CAS  Google Scholar 

  15. Oshima M, Ward MJ: Dietary iodine deficiency as a tumor promoter and carcinogen in male F334/NCr rats. Cancer Res 46:877–883, 1986.

    Google Scholar 

  16. McTiernan AM, Weiss NS, Daling JR: Incidence of thyroid cancer in women in realtion to reproductive and hormonal factors. Am J Epidemiol 120:423–435, 1984.

    PubMed  CAS  Google Scholar 

  17. Ron E, Curtis R, Hoffman DA, et al.: Multiple primary breast and thyroid cancers. Br J Cancer 49:87–92, 1979.

    Google Scholar 

  18. Williams ED: The etiology of thyroid tumors. Clin Endocrinol Metab 8:193–207, 1979.

    PubMed  CAS  Google Scholar 

  19. Kung TM, Ng WL, Gibson JB: Volcanoes and carcinoma of the thyroid: A possible association. Arch Environ Health 36:265–271, 1981.

    PubMed  CAS  Google Scholar 

  20. Ron E, Kleinerman RA, Boice JD, LiVolsi VA, et al.: A population-based case-control study of thyroid cancer. J Natl Cancer Inst 79:1–12, 1987.

    PubMed  CAS  Google Scholar 

  21. Clark OH, Gerend PL: Thyrotropin regulation of adenyl cyclase activity in human thyroid neoplasms. Surgery 97:539–546, 1985.

    PubMed  CAS  Google Scholar 

  22. Schneider PB: TSH stimulation of 32P incorporation into phospho-lipids of thyroids from patients with Graves’ disease. J Clin Endocrinol Metab 38:148–150, 1974.

    PubMed  CAS  Google Scholar 

  23. Duh QY, Clark OH: Factors influencing the growth of normal and neoplastic thyroid tissue. Surg Clin Noth Am 67:281–298, 1987.

    CAS  Google Scholar 

  24. Goretzki PE, Clark OH: Thyroid-stimulating hormone receptor studies. Prog Surg 19:181–204, 1988.

    Google Scholar 

  25. Querido A, Djokomoeljanto R, van Hardevelt C: The consequences of iodine deficiency for health. Presented at World Health Organization. PAHO., Washington DC, 1974.

    Google Scholar 

  26. Wynder EL: Some practical aspects of cancer prevention. N Engl J Med 246:573–582, 1952.

    PubMed  CAS  Google Scholar 

  27. Bray GA: Increased sensitivity of the thyroid in iodine-depleted rats to the goitrogenic effects of thyrotropin. J Clin Invest 47:1640–1647, 1968.

    PubMed  CAS  Google Scholar 

  28. Gaitan E, Nelson NC, Poole GV: Endemic goiter and endemic thyroid disorders. World J Surg 15(2):205–215, 1991.

    PubMed  CAS  Google Scholar 

  29. Loebenstein BG, Buchan G, Sadeghi R, et al.: Transforming growth factor beta regulates thyroid growth. J Clin Invest 83:764–770, 1989.

    Google Scholar 

  30. Petenusci SO, Lopes RA, Silvanetto CR: Morphometric study of the reversibility of thyroid alterations in rats submitted to hypervitaminosis A. Int J Vitam Nutrit Res 50(3):238–241, 1980.

    Google Scholar 

  31. Taylor S: Physiologic consideration in the genesis and management of nodular goiter. Am J Med 20:698–709, 1956.

    PubMed  CAS  Google Scholar 

  32. Gaitan, E: Goitrogens in food and water. Ann Rev Nutrit 10:21–39, 1990.

    CAS  Google Scholar 

  33. Dumont JE, Takeuchi A, Lamy F, et al.: Thyroid control: An example of a complex regulation network. Adv Cyclic NucI Res 14:479–489, 1981.

    CAS  Google Scholar 

  34. Haslam SZ, Levely ML: Estrogen responsiveness of normal mouse mammary cells in primary culture: Association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835–1840, 1985.

    PubMed  CAS  Google Scholar 

  35. Duh QY, Clark OH: Growth factors for thyroid neoplasms. Prof Surg 19:205–222, 1988.

    Google Scholar 

  36. Siperstein AE, Miller RA, Clark OH: Stimulatory effect of vasoactive intestinal Dolypeptide on human normal and neoplastic thyroid tissue. Surgery 104:985–992, 1988.

    PubMed  CAS  Google Scholar 

  37. Westermark K, Karlsson FA, Westermark B: Epidermal growth factor modulates thyroid growth and function in culture. Endocrinology 112:1680–1686, 1983.

    PubMed  CAS  Google Scholar 

  38. Bishop JM: Viral oncogenes. Cell 42:23–36, 1985.

    PubMed  CAS  Google Scholar 

  39. Varmus HE: The molecular genetics of cellular oncogenes. Ann Rev Genelt 18:553–612, 1984.

    CAS  Google Scholar 

  40. Weinberg RA: The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776, 1985.

    PubMed  CAS  Google Scholar 

  41. Arbeit JM: The molecular conspiracy in the mucosa: A review of the molecular biology of colorectal carcinogenesis. Prog Colon Rectal Surg 41:85–100, 1991.

    Google Scholar 

  42. Drucker BJ, Mamon HJ, Roberts TM: Oncogenes, growth factors and signal transduction. N Engl J Med 321:1381–1391, 1989.

    Google Scholar 

  43. Flier JS, Unverhill LH: Oncogenes and tumor-suppressor genes. N Engl J Med 318:618–622, 1988.

    Google Scholar 

  44. Wong RS, Passaro E, Jr.: Growth factors: Oncogenes and autocrine hypothesis. Surg Gynecol Obstet 168:468–473, 1989.

    PubMed  CAS  Google Scholar 

  45. Koeffler HP, McCormick F: Molecular mechanisms of cancer. West J Med 155:505–514, 1991.

    PubMed  CAS  Google Scholar 

  46. Greenspan FS: Radiation exposure. JAMA 237:2089–2092, 1979.

    Google Scholar 

  47. Alberts B, et al.: Basic genetic mechanisms. In: Alberts B, et al. (eds): Molecular Biology of the Cell. Garland, New York, 1989, pp 201–274.

    Google Scholar 

  48. Alberts B, Bray D, Lewis J: Control of gene expression. In: Alberts B, Bray D, Lewis J (eds): Molecular Biology of the Cell. Garland, New York, 1989, pp 201–274.

    Google Scholar 

  49. Baxter JD: Advances in molecular biology: Potential impact on diagnosis and treatment of disorders of the thyroid. Med Clin North Am 75:41–59, 1991.

    PubMed  CAS  Google Scholar 

  50. Frauman AG, Moses AC: Oncogenes and growth factors in thyroid carcinogenesis. Endocrinol Metab Clin North Am 19:479–493, 1990.

    PubMed  CAS  Google Scholar 

  51. Lemoine NR, Mayall ES, Wyllie FS, et al.: Activated ras oncogenes in human thyroid cancer. Cancer Res 48:4459–4462, 1988.

    PubMed  CAS  Google Scholar 

  52. Lyons J, Lanois CA, Harsh G, et al.: Two g protein oncogenes in human endocrine tumors, Science 249:655–658, 1990.

    PubMed  CAS  Google Scholar 

  53. Suarez HG, Villard JA, Caillou B, et al.: Gsp mutations in human thyroid tumors. Oncogene 6:677–679, 1991.

    PubMed  CAS  Google Scholar 

  54. Coleta G, Cirafici AM, Vecchio G: Indications of the c-fos oncogene by throtropic hormone in rat thyroid cells in culture. Science 253:458–460, 1986.

    Google Scholar 

  55. Dere WH, Hirayu H, Rapoport B: TSH and cAMP enhance expression of the myc proto-oncogene in cultured thyroid cells. Endocrinology 117:2452, 1985.

    Google Scholar 

  56. Aasland R, Lillenhaug JR, Male RJ, et al.: Expression of oncogenes in thyroid tumors: Coexpression of c-erb2/neµ and c-erb. Br J Cancer 57(4):358–363, 1988.

    Google Scholar 

  57. Klimpfinger M, Ruhri C, Peutz B, et al.: Oncogene expression in a medullary thyroid carcinoma. Virchows Arch 54(4):256–259, 1988.

    Google Scholar 

  58. Reynolds RK, Hockzema GS, Vogel J, et al.: Multiple endocrine neoplasm induced by the promiscuous expression of a viral oncogene. Proc Natl Acad Sci USA 85:135–141, 1988.

    Google Scholar 

  59. Benedict WF, Xu H-J, Hu S, et al.: Role of the retinoblastoma gene in the initiation and progression of human cancer. J Clin Invest 85:988–993, 1990.

    PubMed  CAS  Google Scholar 

  60. Weinberg RA: Tumor suppressor genes. Science 254:1138–1146, 1991.

    PubMed  CAS  Google Scholar 

  61. Jackson CE, Norum RA, et al.: Linkage between MEN2b and chromosome 10 markers. Am J Human Gene 43:A17, 1988.

    Google Scholar 

  62. Larsson C, Skogseid B, Oberg K, et al.: Multiple endocrine neoplasms type 1 gene map to chromosome 11 and is lost in insulinoma. Nature 332:85–87, 1988.

    PubMed  CAS  Google Scholar 

  63. Nelkin BD, Nakamura K, White RW, et al.: Low incidence of loss of chromosome 10 in sporadic and hereditary human medullary thyroid carcinoma. Cancer Res 9:4114–4117, 1989.

    Google Scholar 

  64. Sobel H, Narod SA, Nakamura Y, et al.: Screening for multiple endocrine neoplasia type 2a with DNA polymorphism analysis. N Engl J Med 321:996–999, 1989.

    Google Scholar 

  65. Brunt LM, Wells SA, Jr.: Advances in the diagnosis and treatment of medullary thyroid carcinoma. Surg Clinic North Am 67:263–279, 1987.

    CAS  Google Scholar 

  66. Duh Q-Y, Sancho JJ, Greenspan FS, et al.: Medullary thyroid carcinoma: The need for early diagnosis and total thyroidectomy. Arch Surg 124:1206–1210, 1989.

    PubMed  CAS  Google Scholar 

  67. van Heerden JA, Grant CS, Gharib H, et al.: Long term course of patients with persistent hypercalcitonemia after apparent curative primary surgery for medullary thyroid carcinoma. Ann Surg 212(4):395–401, 1990.

    Google Scholar 

  68. Bruns P.: Beobachtungen und Untersuchungen uber die Schilddrusen behandlung des Kropfes. Beitrz Klin Chir 16:521–534, 1896.

    Google Scholar 

  69. Greer MA, Astwood EB: Treatment of simple goiter with thyroid. J Clin Endocrinol Metab 13:1312–1331, 1953.

    PubMed  CAS  Google Scholar 

  70. Shomaoka K, Sokal JE: Suppressive therapy of nontoxic goiter. Am J Med 57:576–583, 1974.

    Google Scholar 

  71. Crile G, Jr.: Endocrine dependency of papillary carcinomas of the thyroid. JAMA 195:101–104, 1966.

    Google Scholar 

  72. Thomas CG, Jr.: Hormonal treatment of thyroid cancer. J Clin Endocrinol Metab 17: 232–240, 1957.

    PubMed  Google Scholar 

  73. Cheung P, Lee JMH, Boey JH: Thyroxine suppressive therapy of benign solitary nodules: A prospective randomized study. World J Surg 13:818–825, 1989.

    PubMed  CAS  Google Scholar 

  74. Morita T, Tamai H, Oshima A, et al.: Changes in serum thyroid hormone, thyrotropin and thyroglobulin concentrations during thyroxine therapy in patients with solitary thyroid nodules. J Clin Endocrinol Metab 69:227–230, 1989.

    PubMed  CAS  Google Scholar 

  75. Gharib H, James EM, Charboneau JW, et al.: Suppressive therapy with leothyroxine for solitary thyroid nodules. N Engl J Med 317:70–75, 1987.

    PubMed  CAS  Google Scholar 

  76. Berghout A, Wiersinga WM, Drexhage HA, et al.: Comparison of placebo with L-thyroxine alone or with carbinazole for treatment of sporadic non-toxic goitre. Lancet 336:193–197, 1990.

    PubMed  CAS  Google Scholar 

  77. Dunhill TP: The surgery of the thyroid gland (The Lettsomian Lectures). Trans Med Soc London 60:234–237, 1937.

    Google Scholar 

  78. Balme HW: Metastatic carcinoma of the thyroid successfully treated with thyroxine. Lancet 1:812–819, 1954.

    Google Scholar 

  79. Purves HD, Griesbach WE, Kennedy TH: Studies in experimental goiter: Malignant change in transplanted rat thyroid tumor. Br J Cancer 5:301–306, 1951.

    PubMed  CAS  Google Scholar 

  80. Nichols CW, Jr., Lindsay S, Sheline GE, Chaikoff IL: Induction of neoplasms in rat thyroid glands by x-irradiation of a single lobe. Arch Pathol Lab Med 80:177–183, 1965.

    Google Scholar 

  81. Doniach I, Wiliams ED: The development of thyroid and pituitary tumors in the rat two years after partial thyroidectomy. Br. J Cancer 16:222–230, 1962.

    PubMed  CAS  Google Scholar 

  82. Goldberg RC, Lindsay S, Nichols CW, Jr., Chaikoff IL: Induction of neoplasms in the thyroid gland of the rat by subtotal thyroidectomy and by injection of one microcurie of I131. Cancer Res 24:35–44, 1964.

    PubMed  CAS  Google Scholar 

  83. Fogelfeld L, Wiviott MBT, Shore-Freedman E, et al.: Recurrence of thyroid nodules after surgical removal in patients irradiated in childhood for benign conditions. N Engl J Med 320:835–840, 1989.

    PubMed  CAS  Google Scholar 

  84. Razack MS, Shimaoka K, Rao U: Suppressive therapy of thyroid nodules in patients with previous radiotherapy to the head and neck. Am J Surg 156:290–293, 1988.

    PubMed  CAS  Google Scholar 

  85. DeGroot LJ, Reilly M, Pinnemenini K, Refetoff S: Retrospective and prospective study of radiation-induced thyroid disease. Am J Med 74:852–862, 1983.

    PubMed  CAS  Google Scholar 

  86. Dralle H, Bocker KW, Dohler KD, et al.: Growth and function of thirty-four human benign and malignant thyroid xenografts in untreated nude mice. Cancer Res 45:1239–1245, 1985.

    PubMed  CAS  Google Scholar 

  87. Grant S, Luttrell B, Reeve T, et al.: Thyroglobulin may be undetectable in the serum of patients with metastatic disease secondary to differentiated thyroid carcinoma. Cancer 54:1625–1628, 1984.

    PubMed  CAS  Google Scholar 

  88. De Rubertis, Yamashita FK, Dekker A, et al.: Effects of thyroid stimulating hormone on adenylate cyclase activity and intermediary metabolism of ‘cold’ thyroid nodules and normal human thyroid tissue. J Clin Invest 31:1109–1117, 1972.

    Google Scholar 

  89. Clark OH: TSH suppression in the management of thyroid nodules and thyroid cancer. World J Surg 5:39–47, 1981.

    PubMed  CAS  Google Scholar 

  90. Smeds S, Peter HJ, Gerber H, et al.: Effects of thyroxine on cell proliferation in human-multidodular goiter. A study on growth of thyroid tissue transplanted to nude mice. World J Surg 12:241–245, 1988.

    PubMed  CAS  Google Scholar 

  91. Dumont JE, Roger PP, Ludgate M: Assays for thyroid growth immunoglobulins and their clinical implications: Methods, concepts, and misconceptions. Endocrinol Rev 8:448, 1987.

    CAS  Google Scholar 

  92. McKenzie JM, Zakarija M: Clinical review 3, The clinical use of thyrotropin receptor antibody measurements. J Clin Metab. 69:1093–1099, 1989.

    CAS  Google Scholar 

  93. Filetti S, Belfiore A, Amir SM, et al.: The role of thyroid-stimulating antibodies of Graves’ disease in differentiated thyroid cancer. N Engl J Med 318:753–755, 1988.

    PubMed  CAS  Google Scholar 

  94. Laurent E, Van Sande J, Ludgate M, et al.: Unlike thyrotropin, thyroid stimulating antibodies do not activate phospholipase C in human thyroid cells. J Clin Invest 87:1634–1642, 1991.

    PubMed  CAS  Google Scholar 

  95. Kawabe Y, Eguchi J, Shimomura C, et al.: Interleukin-1 production and action in thyroid tissue. J Clin Endocrinol Metab 68:1174–1179, 1989.

    PubMed  CAS  Google Scholar 

  96. Mime M, Tramontano D, Chin WW, et al.: Interleukin-1 stimulates thyroid cell growth and increases the concentration of the c-myc proto-oncogene RNA in thyroid follicular cells in culture. Endocrinology 120:1212–1217, 1987.

    Google Scholar 

  97. Zakarija M, McKenzie JM: Influence of cytokines on growth and differentiated function of FRTL5 cells. Endocrinology 125:1260–1264, 1989.

    PubMed  CAS  Google Scholar 

  98. Heldin NE, Cvejl CD, Smeds S, Westermark B: Coexpression of functionally active receptors for thyrotiopin and platelet derived growth factor in human thyroid carcinoma cells. Endocrinology 129(4):2187–2193, 1991.

    Google Scholar 

  99. Heldin NE, Gustavsson G, Claesson-Welsh L, et al.: Aberrant expression of receptors for platelet-derived growth factor in an anaplastic thyroid carcinoma cell line. Proc Math Sci USA 85:9302–9304, 1988.

    CAS  Google Scholar 

  100. Roger PP, Dumont JE: Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced serum conditions: Effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol 36:79–93, 1984.

    PubMed  CAS  Google Scholar 

  101. Terrier P, Sheng Z-M, Schlumberger M, et al.: Structure and expression of c myc and c fos proto-oncogenes in thyroid carcinomas. Br J Cancer 57:43–50, 1988.

    PubMed  CAS  Google Scholar 

  102. Lemoine NR, Wyllie FS, Thurston V, et al.: Ras oncogene activitation: An early event in human thyroid tumor genesis. Ann Endocrinol 49:191–197, 1988.

    Google Scholar 

  103. Wyllie FS, Lemoine NR, Williams ED, Thomas-Wynnford D: Structure and expression of nuclear oncogenes in multi-stage thyroid tumor genesis. Br J Cancer 60(4):561–565, 1989.

    Google Scholar 

  104. Lemoine NR, Mayall ES, Wyllie FS, et al.: High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4(2):159–164, 1989.

    Google Scholar 

  105. Namba H, Rubin SA, Fagin JA: Point mutations of ras oncogenes are an event in thyroid tumorigenesis. Mol Endocrinol 4:1474–1479, 1990.

    PubMed  CAS  Google Scholar 

  106. Namba H, Gutman RA, et al.: H ras proto-oncogene mutations in human thyroid neoplasms. J Clin Endocrinol Metab 71:223–229, 1990.

    PubMed  CAS  Google Scholar 

  107. Duh QY, Zhang Y, Lyons JF, et al.: Ras oncogene activation in human thyroid tumors is associated with high adenylate cyclase response to thyrotropin (TSH) Pressented at The Endocrine Society Annual Meeting, June 20–23, 1990.

    Google Scholar 

  108. Schark C, Fulton N, Jacoby RF, et al.: N-ras 61 oncogene mutations in Hurthle cell tumors. Surgery 108(6):994–999, 1990.

    Google Scholar 

  109. Stringer BM, Rocoson JM, Pprkar MD, et al.: Detection of the H-ras oncogene in human thyroid neoplastic carcinomas. Experientia 45(4):372–376, 1989.

    Google Scholar 

  110. Karga H, Lee J-K, Vickery AL, et al.: Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab 73:832–836, 1991.

    PubMed  CAS  Google Scholar 

  111. Wright PA, Williams ED, Lemoine NR, Thomas-Wynford D, et al.: Radiation-associated and’ spontaneous’ human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene 6:471–473, 1991.

    PubMed  CAS  Google Scholar 

  112. Johnson TL, Lloyd RV, Thor A: Expression of ras oncogene p 21 antigen in normal and proliferative thyroid tissues. Am J Pathol 127:60–65, 1987.

    PubMed  CAS  Google Scholar 

  113. Pacini F, Basolo F, Fugazzola U, et al.: Expression the ras gene product (p21) in primary and metastatic differentiated thyroid cancer: Possible predictor of poor outcome. Presented at 19th ETA Meeting, Hannover, 1991.

    Google Scholar 

  114. Nakagawa T, Mabry M, de Bustros A, et al.: Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA 84:5923–5927, 1987.

    PubMed  CAS  Google Scholar 

  115. Bar-Sagi D, Feramisco JR: Microingestion of the ras oncogene product into PC12 cells induces morphologic differentiation. Cell 42:841–848, 1985.

    PubMed  CAS  Google Scholar 

  116. Shi Y, Zou M, Schmidt H, et al.: High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res 51:2690–2693, 1991.

    PubMed  CAS  Google Scholar 

  117. Goretzki PE, Stacy-Phipps S. Roseneau W, et al.: Heterogeneous distribution of Gsp oncogenes in human thyroid tumors. Nature, submitted.

    Google Scholar 

  118. Lidereau R: Molecular characterization of the genetic risk in breast cancer. Eur J Gynecol Oncol 10(3):182–184, 1989.

    Google Scholar 

  119. Muschel RJ, Williams JE, Lowy DR, Liotta LA: Having ras induction of metastatic potential depends upon oncogene activation and the type of recipient cell. Am J Pathol 121:1–8, 1985.

    PubMed  CAS  Google Scholar 

  120. O’Sullivan C, Barton CM, Staddon SL: Activating point mutations of the gsp oncogene in human thyroid adenomas. Mol Carcinog 4(5):345–349, 1991.

    Google Scholar 

  121. Goretzki PE, Lyons J, Demeure M, et al.: Biological important differences in the oncogene pattern of differentiated thyroid cancer from German and American patients. World J Surg, 116:576–580, 1992.

    Google Scholar 

  122. Weinstein LS, Shenker A, Gejman PV, et al.: Activating mutations of the stimulatory protein in the McCune-Albright syndrome. N Engl J Med 325(24):1688–1695, 1991.

    Google Scholar 

  123. Fusco A, Grieco M, Santoro M, et al.: A new oncogene in human thyroid papillary carcinomas and their lymph-node metastases. Nature 328:170–177, 1987.

    PubMed  CAS  Google Scholar 

  124. Santoro MR, Rosati R, Grieco M, et al.: The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 5(10):1595–1598, 1990.

    Google Scholar 

  125. Dongi R, Soezi G, et al.: The oncogene associated with human papillary thyroid carcinoma (PTC) is assigned to chromosome 10qll-ql2 in the same region as multiple endocrine neoplasia type 2A. Oncogene 4(41):521–523, 1990.

    Google Scholar 

  126. Bargarzone I, Pierotti MA, Monzini N, et al.: High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4(12):1457–1462, 1989.

    Google Scholar 

  127. Wright PA, Lemoine NR, Goretzki PE, et al.: Mutation of the p53 gene in a differentiated human thyroid carcinoma cell line, but not in primary thyroid tumors. Oncogene 6:1693–1697, 1991.

    PubMed  CAS  Google Scholar 

  128. Ito T, Seyama T, Mizuno T, et al.: Unique association of p53 mutations with undif-ferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res 52: 1369–1371, 1992.

    PubMed  CAS  Google Scholar 

  129. Vogelstein B, Fearon ER, Hamiton SR, et al.: Genetic alterations during colorectal tumor development. N Engl J Med 319:525–532, 1988.

    PubMed  CAS  Google Scholar 

  130. Mukhopadhyay T, Tainsky M, Cavender AC, Roth JA: Specific inhibition of K ras expression and tumorigenicity of lung cancer cells by antisense RNA. Cancer Res 51:1744–1748, 1991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, O.H., Duh, QY. (1993). Thyroid growth factors and oncogenes. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics