Skip to main content

Activated oncogenes and putative tumor suppressor genes involved in human breast cancers

  • Chapter
Oncogenes and Tumor Suppressor Genes in Human Malignancies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

The clinical progression of human breast cancer almost certainly reflects accumulated molecular defects in specific genes that are important in regulating normal breast tissue growth and development. These specific defects may occur in association with gross chromosomal damage and aberrations in total cellular DNA content, once providing the only basis for their genetic detection. Within the past decade, however, new molecular techniques have enabled the detection of an increasing number of genetic abnormalities that are specific to malignant cells but not necessarily unique to breast cancers. Some of these molecular defects found in the earliest stages of human breast cancer (e.g., c-erbB-2 amplification) appear to have clinical significance by their ability to predict tumor relapse and patient survival, suggesting that they produce permanent cellular disturbances contributing to the proliferative or invasive nature of breast cancer. Nonetheless , a unified molecular model explaining breast carcinogenesis and its clinical progression is far from being realized. As this review demonstrates, we have only begun to identify and characterize clinically significant genetic abnormalities as they are found in primary human breast cancers. At present, it is useful to classify these molecular abnormalities into two types: gain-of-function genetic events that activate proto-oncogenes by DNA mutation, rearrangement, or amplification, and loss-of-function defects reflecting putative tumor suppressor genes that have been inactivated by DNA mutation and unmasked by deletion or allelic loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hainsworth PJ, Raphael KL, Stillwell RG, Bennett RC, Garson OM: Cytogenetic features of twenty-six primary breast cancers. Cancer Genet Cytogenet 53:205–218, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Trent JM: Cytogenetic and molecular biologic alterations in human breast cancer: A review. Breast Cancer Res Treat 5:221–229, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Heim S, Mitelman F: Cancer Cytogenetics. Alan R. Liss, New York, 1987, pp 232–233.

    Google Scholar 

  4. Mitelman F: Catalog of Chromosome Aberrations in Cancer, 3rd ed. Alan R. Liss, New York, 1988.

    Google Scholar 

  5. Ferti-Passantonopoulou A, Panani AD, Raptis S: Preferential involvement of llq23-24 and 1lpl5 in breast cancer. Cancer Genet Cytogenet 51:183–188, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Dutrillaux B, Gerbault-Sereau M, Zafrani B: Characterization of chromosomal anomalies in human breast cancer. A comparison of 30 paradiploid cases with few chromosome changes. Cancer Genet Cytogenet 49:203–217, 1990.

    CAS  Google Scholar 

  7. Gerbault-Sereau M, Vielh P, Dutrillaux B: Cytogenetic study of twelve near-diploid breast cancers with chromosomal changes. Annales Genetique 30:146–151, 1987.

    Google Scholar 

  8. Gebhart E, Brudelein S, Augustus M, Seibert E, Feldner J, Schmidt W: Cytogenetic studies on human breast carcinomas. Breast Cancer Treat Res 8:125–138, 1986.

    Article  CAS  Google Scholar 

  9. Saint-Ruf C, Gerbault-Sereau M, Viegas-Pequignot E, Zafrani B, Malfoy B, Dutrillaux B: Recurrent homogenously staining regions in 8pl in breast cancer and lack of amplification of POLB, LHRH and PLAT genes. Cancer Genet Cytogenet 52:27–35, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Band V, Zajchowski D, Stenman G, Morton CC, Kulesa V, Connolly J, Suger R: A newly established metastatic breast tumor cell line with integrated amplified copies of erbB-2 and double minute chromosomes. Genes Chromosomes Cancer 1:48–58, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Saint-Ruf C, Gerbault-Seureau M, Viegas-Pequiqnot E, Zafrani B, Cassingena R, Dutrillaux B: Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes, Chromosomes Cancer 2:18–26, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Sato T, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y: Accumulation of genetic alterations and progression of primary breast cancer. Cancer Res 51:5794–5799, 1991.

    PubMed  CAS  Google Scholar 

  13. Genuardi M, Tsihira H, Anderson DE, Saunders GF: Distal deletion of chromosome lp in ductal carcinoma of the breast. Am J Human Genet 45:73–82, 1989.

    CAS  Google Scholar 

  14. Mathew CGP, Smith BA, Thorpe K, Wong Z, Royle NJ, Jeffreys AL, Ponder BAJ: Deletions of genes on chromosome 1 in endocrine neoplasia. Nature 328:524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Mathew CGP, Chin KS, Easton DF, Thorpe K, Carter C, Liou GI, Fong S-L: A linked genetic marker for multiple endocrine neoplasia type 2a on chromosome 10. Nature 328:527–528, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Simpson NE, Kidd KK, Goodfellow PJ, McDermid H, Myers S, Kidd JR, Jackson CE, Duncan AM, Farrer LA, Brasch K: Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 328:528–530, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Chen L-C, Dollbaum C, Smith HS: Loss of heterozygosity on chromosome lq in human breast cancer. Proc Natl Acad Sci USA 86:7204–7207, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Devilee P, van Vliet M, Bardoel A, Kievits T, Kuipers-Dijkshoorn N, Pearson PL, Cornelisse CJ: Frequent somatic imbalance of marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res 51:1020–1025, 1991.

    PubMed  CAS  Google Scholar 

  19. Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J: A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263:12820–12823, 1988.

    PubMed  CAS  Google Scholar 

  20. Siddiqui J, Abe M, Hayes D, Sharri E, Yunis E, Kufe DW: Isolation and sequencing of a cDNA coding for the human DF-3 breast carcinoma-associated antigen. Proc Natl Acad Sci USA 85:2320–2323, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Merlo GR, Siddiqui JM, Cropp CS, Liscia DS, Lidereau R, Callahan R, Kufe DW: Frequent alteration of the DF3 tumor-associated antigen gene in primary human breast carcinomas. Cancer Res 49:6966–6971, 1989.

    PubMed  CAS  Google Scholar 

  22. Gendler SJ, Cohen EP, Craston A, Taylor-Papadimitriou J, Johnstone G: Modifications of chromosome I in breast cancer. Proc Am Assoc Cancer Res 30:39, 1989 (abstr).

    Google Scholar 

  23. Chen L-C, Ngo JT, Kurisu W, Smith HS: Loss of heterozygosity on chromosome lq and 17p in human breast cancer (abstr #1947). Proc Am Assoc Cancer Res 31:328, 1990.

    Google Scholar 

  24. Kufe DW, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, Schlom J: Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3:223–232, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Lundy J, Thor A, Maenza R, Schlom J, Forourar F, Testa M, Kufe D: Monoclonal antibody DF3 correlates with tumor differentiation and hormone receptor status in breast cancer patients. Breast Cancer Res Treat 5:269–276, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Hayes DF, Mesa-Tejada R, Papsidero LD, Croghan GA, Korzun AW, Norton L, Strauchen JA, Grimes M, Weiss RB, Ree HJ, Thor AD, Koerner FC, Rice MA, Barcos M, Kufe DW. Prediction of prognosis in primary breast cancer by detection of a high molecular weight mucus-like antigen using monoclonal antibodies DF3, F36/22, and CU18: A Cancer and Leukemia Group B study. J Clin Oncol 9:1113–1123, 1991.

    PubMed  CAS  Google Scholar 

  27. Ali IU, Lidereau R, Callahan R: Presence of two members of c-erbA receptor gene family (c-erbAß and c-erbA2) in smallest region of somatic homozygosity on chromosome 3p21-25 in human breast cancer. J Natl Cancer Inst 81:1815–1820, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Devilee P, Van der Broek M, Kuipers-Dijkshoorn N, Kolluri R, Kahn PM, Pearson PL, Cornelisse CF: At least four different chromosomal regions are involved in loss of heterozygosity in human breast carcinoma. Genomics 5:554–560, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Devilee P, van Vliet M, van Sloun P, Kiupers-Dijkshoorn NK, Hermans J, Pearson PL, Cornelisse CJ: Allelotype of human breast carcinoma: A second major site for loss of heterozygosity is on chromosome 6q. Oncogene 6:1705–1711, 1991.

    PubMed  CAS  Google Scholar 

  30. Ali IU: unpublished.

    Google Scholar 

  31. Naylor SL, Johnson BE, Minna JD, Sakaguchi, AY: Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer. Nature 329:454, 1987.

    Article  Google Scholar 

  32. Kovacs G, Erlandsson R, Boldog F, Ingvarsson S, Muller-Brechlin R, Klein G, Sumegi J: Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85:1571–1575, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269, 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Zenke M, Muñoz A, Sap J, Vennstrom B, Beug H: v-erbA oncogene activation entails the loss of hormone-dependent regulator activity of c-erbA. Cell 61:1035–1049, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R: Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339:139–143, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Van de Woude GF, Aaronson SA: Identification of the hepatocyte growth factor receptor as the c-met protooncogene product. Science 251:802–804, 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Mackay J, Elder PA, Porteous DJ, Steel CM, Hawkins RA, Going JJ, Chetty U: Partial deletion of chromosome 11p in breast cancer correlates with size of primary tumour and oestrogen receptor level. Br J Cancer 58:710–714, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Ali UI, Lidereau R, Theillet C, Callahan R: Reduction to homozygosity of genes on chromosome II in human breast neoplasia. Science 238:185–188, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Barkardottir RB, Johannsson OT, Arason A, Gudnason V, Egilsson V: Polymorphism of the c-Ha-ras-1 proto-oncogene in sporadic and familial breast cancer. Int J Cancer 11: 251–255, 1989.

    Article  Google Scholar 

  40. Sheng ZM, Guerin M, Gabillot M, Spellmann M, Riou G: c-Ha-ras-1 polymorphs in human breast carcinomas: Evidence for a normal distribution of allele. Oncogene Res 2:245–250, 1988.

    Google Scholar 

  41. Hall JM, Huey B, Morrow J, Newman B, Lee M, Jones E, Carter C, Buehring GC, King M-C: Rare HRAS alleles and susceptibility to human breast cancer. Genomics 6:188–191, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R: Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781, 1986.

    PubMed  CAS  Google Scholar 

  43. Lundberg C, Skoog L, Cavenee WK, Nordenskjold M: Loss of heterozygosity in human ductal breast tumors indicates a recessive mutation on chromosome 13. Proc Natl Acad Sci USA 84:2372–2376, 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Lee EY-HP, To H, Shew J-Y, Bookstein R, Skully P, Lee W-H: Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218–221, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. T’Ang A, Varley JM, Chakraborty S, Murphree AL, Fung Y-KT: Structural rearrangement of retinoblastoma gene in human breast carcinoma. Science 242:263–272, 1988.

    Article  CAS  Google Scholar 

  46. Varley JM, Armour J, Swallow JE, Jeffreys AF, Ponder BAJ, T’Ang A, Fung Y-KT, Brammar WJ, Walker RA: The retinoblastoma gene is frequently altered leading to loss of expression in primary tumors. Oncogene 4:425–429, 1989.

    Google Scholar 

  47. Hartley AL, Birch JM, Marsden HB, Harris M: Breast cancer risk in mothers of children with osteosarcoma and chondrosarcoma. Br J Cancer 54:819–823, 1986.

    Article  PubMed  CAS  Google Scholar 

  48. Sato T, Tanigami A, Yamakawa K, Akiyama F, Kasumi F, Sakamoto G, Nakamura Y: Allelotype of breast cancer: Cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res 50:7184–7189, 1990.

    PubMed  CAS  Google Scholar 

  49. Hollstein M, Sidranski D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 253:49–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  50. Devilee P, Cornelisse CJ, Kuipers-Dijkshoorn N, Jonkers C, Pearsol PL: Loss of heterozygosity on 17p in human breast carcinomas: Defining the smallest common region of deletion. Cytogenet Cell Genet 53:52–54, 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Chen L-C, Neubauer A, Kurisu W, Waldman FM, Ljung B-M, Goodson W 3rd, Goldman ES, Moore D II, Balaz M, Liu E, Mayall BM, Smith HS: Loss of heterozygosity on the short arm of chromosome 17 is associated with a high proliferative capacity and DNA aneuploidy in primary breast cancer. Proc Natl Acad Sci USA 88:3847–3851, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. Crawford LV, Pirn DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer 30:403–408, 1982.

    Article  PubMed  CAS  Google Scholar 

  53. Crawford LV, Pion DC, Lamb P: The cellular protein p53 in human tumors. Mol Biol Med 2:261–272, 1984.

    PubMed  CAS  Google Scholar 

  54. Thor AD, Moore DH II, Edgerton SM, Kawasaki ES, Reihaus E, Lynch HT, Marcus JM, Schwartz L, Chen LC, Mayall BM, Smith HS: Accumulation of p53 tumor suppressor protein: an independent marker of prognosis in breast cancer. J Natl Cancer Inst 84: 845–855, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Davidoff AM, Herndon JE 2nd, Glover NS, Kerns BJ, Pence JC, Iglehart JD, Marks JR: Relation between p53 overexpression and established prognostic factors in breast cancer. Surgery 110:259–264, 1991.

    PubMed  CAS  Google Scholar 

  56. Iwaya K, Tsuda H, Hiraide H, Tamaki K, Tamakuma S, Fukutomi T, Mukai K,m Hirohashi S: Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res 82:835–840, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Cattoretti G, Rilke F, Andreola S, D’Amato L, Delia D: p53 expression in breast cancer. Int J Cancer 41:178–183, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Ostrowski JL, Sawan A, Henry L, Wright C, Henry JA, Hennessy C, Lennard TJ, Angus B, Horne CH: p53 expression in human breast cancer related to survival and prognostic factors: An immunohistochemical study. J Pathol 164:75–81, 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Davidoff AM, Humphrey PA, Iglehart FD, Marks JR: Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Bartek J, Bartkova J, Vojtesek B, Staskova Z, Rejthar A, Kovanik J, Lane DP: Patterns of expression of the p53 tumor suppressor in human breast tissues and tumors in situ and in vitro. Int J Cancer 46:839–844, 1990.

    Article  PubMed  CAS  Google Scholar 

  61. Davidoff AM, Kerns BJ, Iglehart JD, Marks JR: Maintenance of p53 alterations throughout breast cancer progression. Cancer Res 51:2605–2610, 1991.

    PubMed  CAS  Google Scholar 

  62. Bartek J, Iggo R, Gannon J, Lane DP: Genetic and immunochemical analysis of resistant p53 in human breast cancer cell lines. Oncogene 5:893–899, 1990.

    PubMed  CAS  Google Scholar 

  63. Presser J, Thompson AM, Cranston G, Evans HF: Evidence that p53 behaves as a tumor suppressor gene in sporadic breast tumors. Oncogene 5:1573–1579, 1990.

    Google Scholar 

  64. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in the p53 gene occur in diverse human tumors. Nature 342: 705–708, 1989.

    Article  PubMed  CAS  Google Scholar 

  65. Coles C, Thompson AM, Elder PA, Cohen BB, MacKenzie IM, Cranston G, Chetty U, Mackay J, MacDonald M, Nakamura Y, Hoyheim B, Steel CM: Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet 336:763–765, 1990.

    Article  Google Scholar 

  66. Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S: Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci USA 88: 10657–10661, 1991.

    Article  PubMed  CAS  Google Scholar 

  67. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germ line p53 mutation in a familial syndrome of breast cancer sarcomas and other neoplasms. Science 250:1233–1238, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH: Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni Syndrome. Nature 348: 747–749, 1990.

    Article  PubMed  CAS  Google Scholar 

  69. Leone A, McBride OW, Weston A, Wang MC, Anglard P, Cropp CS, Goepel JR, Lidereau R, Callahan R, Steeg PS: Somatic allelic deletion of nm23 in human cancer. Cancer Res 51:2490–2493, 1991.

    PubMed  CAS  Google Scholar 

  70. Hall JF, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King M-C: Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689, 1990.

    Article  PubMed  CAS  Google Scholar 

  71. Narod SA, Feunteun J, Lynch HT, Watson P, Conway T, Lynch J, Lenoir GM: Familial breast-ovarian cancer locus on chromosome 17ql2-23. Lancet 338:82–83, 1991.

    Article  PubMed  CAS  Google Scholar 

  72. Poutanen M, Moncharmont B, Vihko R: 17ß-hydroxysteroid dehydrogenase gene expression in human breast cancer cells: Regulation of expression by a progestin. Cancer Res 52:290–294, 1992.

    PubMed  CAS  Google Scholar 

  73. Fearon ER, Cho KR, Nigro JM, Vogelstein B: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–50, 1990.

    Article  PubMed  CAS  Google Scholar 

  74. Devilee P, van Vliet M, Kiupers-Dijkshoorn N, Pearson PL, Cornelisse CJ: Somatic genetic changes on chromosome 18 in breast carcinomas: Is the DCC gene involved? Oncogene 6:311–315, 1991.

    PubMed  CAS  Google Scholar 

  75. Nusse R, Varmus HE: Many tumors induced by mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109, 1982.

    Article  PubMed  CAS  Google Scholar 

  76. Dickson C: Role of the /Int-genes in murine mammary tumor development and implications for human breast cancer. Int J Cancer 5(Suppl.):51–54, 1990.

    Article  CAS  Google Scholar 

  77. Nusse R, Brown A, Papkoff J, Scambler P, Shackleford G, McMahon A, Moon R, Varmus H: A new nomenclature for int-l and related genes: The Wnt gene family. Cell 64:231, 1991.

    Article  PubMed  CAS  Google Scholar 

  78. Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R: The Drosophila homologue of the mouse mammary oncogene int-l is identical to the segment polarity gene wingless. Cell 50:649–657, 1987.

    Article  PubMed  CAS  Google Scholar 

  79. Wilkinson DG, Bailes AJ, McMahon AP: Expression of the proto-oncogene int-l is restricted to specific neural cells in the developing mouse embryo. Cell 50:79–88, 1987.

    Article  PubMed  CAS  Google Scholar 

  80. Rijsewijk F, Van Deemter L, Wagemaar E, Sonnenberg A, Nusse R: Transfection of the int-l mammary oncogene in cuboidal RAC mammary cell line results in morphological transformation and tumorigenicity. EMBO J 6:127–131, 1987.

    PubMed  CAS  Google Scholar 

  81. Tsukamoto AS, Grosschedl R, Guzman RC, Varmus HE: Expression of the int-l gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625, 1988.

    Article  PubMed  CAS  Google Scholar 

  82. Jakobovitz A, Shackleford GM, Varmus HE, Martin GR: Two proto-oncogenes implicated in mammary carcinogenesis, int-l and int-2, are independently regulated during mouse development. Proc Natl Acad Sci USA 83:7806–7810, 1986.

    Article  Google Scholar 

  83. Wilkinson DG, Peters G, Dickson C, McMahon AP: Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7: 691–695, 1988.

    PubMed  CAS  Google Scholar 

  84. Wilkinson DG, Bailes AJ, McMahon AP: Expression of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105:131–136, 1989.

    PubMed  CAS  Google Scholar 

  85. Represa J, Leon Y, Miner C, Giraldez F: The int-2 itproto-oncogene is responsible for induction of the inner ear. Nature 353:561–563, 1991.

    Article  PubMed  CAS  Google Scholar 

  86. Dickson C, Peters G: Potential oncogene products related to growth factors. Nature 326:833, 1987.

    Article  PubMed  CAS  Google Scholar 

  87. Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P: The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J 9:907–913, 1990.

    PubMed  CAS  Google Scholar 

  88. Peters G, Lee AE, Dickson C: Activation of cellular gene by mouse mammary tumour virus may occur early in mammary tumour development. Nature 309:273–275, 1984.

    Article  PubMed  CAS  Google Scholar 

  89. Nusse R: The int genes in mammary tumorigenesis and in normal development. Trends Genet 4:291–295, 1988.

    Article  PubMed  CAS  Google Scholar 

  90. Morris VL, Rao TR, Kozak CA, Gray DA, Lee Chan ECM, Cornell TJ, Taylor CB, Jones RF, McGrath CM: Characterization of Int-5, a locus associated with early events in mammary carcinogenesis. Oncogene Res 6:53–63, 1991.

    PubMed  CAS  Google Scholar 

  91. Gallahan D, Callahan A: Mammary tumorigenesis in feral mice: Identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J Virol 61:66–74, 1987.

    PubMed  CAS  Google Scholar 

  92. Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekuguchi M, Terada M, Sugimura T: Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83:3997–4001, 1986.

    Article  PubMed  CAS  Google Scholar 

  93. Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittman M, Basilico C: An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50:729–737, 1987.

    Article  PubMed  CAS  Google Scholar 

  94. Peters G, Brookes S, Smith R, Placzek M, Dickson C: The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA 86:5678–5682, 1989.

    Article  PubMed  CAS  Google Scholar 

  95. Yoshida T, Miyogawa K, Odagiri H, Sakamoto H, Little PF, Terada M, Sugimura T: Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2 encoded protein. Proc Natl Acad Sci USA 84: 7305–7309, 1987. (Published erratum appears in Proc Natl Acad Sci USA 85:1967, 1988)

    Article  PubMed  CAS  Google Scholar 

  96. Peters G, Lee AE, Dickson C: Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumor virus. Nature 320:628–631, 1986.

    Article  PubMed  CAS  Google Scholar 

  97. Peters G, Kozak C, Dickson C: Mouse mammary tumor virus integration regions int-l and int-2 map on different mouse chromosomes. Mol Cell Biol 4:375–378, 1984.

    PubMed  CAS  Google Scholar 

  98. Tsuda T, Tahara E, Kajiyama G, Sakamoto H, Terada M, Sugimura T: High incidence of coamplification of hst-1 and int-2 genes in human esophageal carcinomas. Cancer Res 49:5505–5508, 1989.

    PubMed  CAS  Google Scholar 

  99. Zhou DJ, Casey G, Cline MJ: Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 2:279–282, 1988.

    PubMed  CAS  Google Scholar 

  100. Tsutsumi M, Sakamoto H, Yoshida T, Kakizoe T, Koiso K, Sugimura T, Terada M: Coamplification of the hst-1 and int-2 genes in human cancers. Jpn J Cancer Res 79: 428–432, 1988.

    Article  PubMed  CAS  Google Scholar 

  101. Hatada I, Tokino T, Ochiya T, Matsubara K: Co-amplification of integrated hepatitis B virus DNA and transforming gene hst-l in a hepatocellular carcinoma. Oncogene 3: 537–540, 1988.

    PubMed  CAS  Google Scholar 

  102. Adelaide J, Mattei MG, Marics I, Raybaud F, Planche J, deLapeyriere O, Birnbaum D: Chromosomal localization of the hst oncogene and its co-amplification with the int-2 oncogene in a human melanoma. Oncogene 2:413–416, 1988.

    PubMed  CAS  Google Scholar 

  103. Ali IU, Merlo G, Callahan R, Lidereau R: The amplification unit on chromosome Ilql3 in aggressive primary breast tumors entails the bcl-l, int-2 and hst loci. Oncogene 4: 89–92, 1989.

    PubMed  CAS  Google Scholar 

  104. Fantl V, Brookes S, Smith R, Casey G, Barnes D, Johnstone G, Peters G, Dickson C: Characterization of the proto-oncogene INT-2 and its potential for diagnosis of human breast cancer. In: Furth M, Greaves M (eds): Cancer Cells, Vol. 7: Molecular Diagnosis of Human Cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989, pp 283–287.

    Google Scholar 

  105. Theillet C, LeRoy X, deLapeyriere O, Grosgeorges J, Adnane J, Reynaud S, Simony-Lafontaine J, Goldfarb M, Escot C, Birnbaum D, Gaudray P: Amplification of FGF-related genes in human tumors: Possible involvement of HST in breast carcinomas. Oncogene 4:915–922, 1989.

    PubMed  CAS  Google Scholar 

  106. Lidereau R, Callahan R, Dickson C, Peters G, Escot C, Ali IU: Amplification of the int-2 gene in primary human breast tumors. Oncogene Res 2:285–291, 1988.

    PubMed  CAS  Google Scholar 

  107. Varley JM, Walker RA, Casey G, Brammar WJ: A common alteration of the int-2 proto-oncogene in DNA from primary breast carcinomas. Oncogene 3:87–91, 1988.

    CAS  Google Scholar 

  108. Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, Miyajima N, Toyoshima K, Yamamoto T, Yokota J, Yoshida T, Sakamoto H, Terada M, Sugimura T: Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbß-2lear-1. Cancer Res 49:3104–3108, 1989.

    PubMed  CAS  Google Scholar 

  109. Adane J, Gaudray P, Simon M-P, Simony-Lafontaine J, Jeanteur P, Theillet C: Proto-oncogene amplification and human breast tumor phenotype. Oncogene 4:1389–1395, 1989.

    Google Scholar 

  110. Nguyen C, Roux D, Mattei MG, deLapeyriere O, Goldfarb M, Birnbaum D, Jordan B: The FGF-related oncogenes hst and int-2 and the bcl-l locus are contained within one megabase in band ql3 of chromosome 11, while the fgf-5 oncogene maps to 4q21. Oncogene 3:703–708, 1988.

    PubMed  CAS  Google Scholar 

  111. Wada A, Sakamoto H, Katoh O, Yoshida T, Yokota J, Little PFR, Sugimura T, Terada M: The homologous oncogenes, HST1 and INT2, are closely located in the human genome. Biochem Biophys Res Commun 157:828–835, 1988.

    Article  PubMed  CAS  Google Scholar 

  112. Machotka SV, Garrett CT, Schwantz AM, Callahan R: Amplification of the protooncogenes int-2, c-erbB-2 and c-myc in human breast cancer. Clin Chim Acta 184:207–217, 1989.

    Article  PubMed  CAS  Google Scholar 

  113. Meyers SL, O’Brien MT, Smith T, Dudley JP: Analysis of the int-1, int-2, c-myc and neu oncogenes in human breast carcinomas. Cancer Res 50:5911–5918, 1990.

    PubMed  CAS  Google Scholar 

  114. Liscia DS, Merlo GR, Garrett C, French D, Mariani-Constantini R, Callahan R: Expression of int-2 mRNA in human tumors amplified at the int-2 locus. Oncogene 4:1219–1224, 1989.

    PubMed  CAS  Google Scholar 

  115. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM: Molecular cloning of the chromosomal breakpoint of B cell lymphomas and leukemias with the t(ll;14) chromosome translocation. Science 224:1403, 1984.

    Article  PubMed  CAS  Google Scholar 

  116. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce RM: Clustering of breakpoints on chromosome 11 in human B cell neoplasms with the t(ll;14) chromosomal translocation. Nature 315:340–343, 1985.

    Article  PubMed  CAS  Google Scholar 

  117. Ali IU, Merlo G, Lidereau R, Callahan R: The amplification unit on chromosome Ilql3 in aggressive primary human breast tumors entails the bcl-1, int-2 and hst loci. Oncogene 4:89–92, 1989.

    PubMed  CAS  Google Scholar 

  118. Theillet C, Adnane J, Szepetowski P, Simon M-P, Jeanteur P, Birnbaum D, Gaudray P: Bcl-1 participates in the Ilql3 amplification fond in breast cancer. Oncogene 5:147–149, 1990.

    PubMed  CAS  Google Scholar 

  119. Arnold A, Kim WG, Gaz RD, Eddy RL, Fukushima Y, Byers MG, Shows TB, Kronenberg HM: Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest 83:2034–2040, 1989.

    Article  PubMed  CAS  Google Scholar 

  120. Lammie GA, Fantl V, Smith R, Shuuring E, Brookes S, Michalides R, Dickson C, Arnold A, Peters G: D11S287, a putative oncogene on chromosome Ilql3 is amplified and expressed in squamous cell and mammary carcinomas and linked to bcl-1. Oncogene 6:439–444, 1991.

    PubMed  CAS  Google Scholar 

  121. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A: A novel cyclin encoded by a bcl-l-linked candidate oncogene. Nature 350:512–515, 1991.

    Article  PubMed  CAS  Google Scholar 

  122. Withers DA, Harvey RC, Faust JB, Melnyk OI, Carey K, Meeker T: Characterization of a candidate bcl-l gene. Mol Cell Biol 11:4846–4853, 1991.

    PubMed  CAS  Google Scholar 

  123. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ: Colony-stimulating factor 1 regulates novel cyclins during the Gl phase of the cell cycle. Cell 65:701–713, 1991.

    Article  PubMed  CAS  Google Scholar 

  124. Xiong Y, Connolly T, Futcher B, Beach D: Human D-type cyclin. Cell 65:691–699, 1991.

    Article  PubMed  CAS  Google Scholar 

  125. Lew DJ, Dulic V, Reed SI: Isolation of three novel human cyclins by rescue of Gl cyclin (Cln) function in yeast. Cell 66:1197–1206, 1991.

    Article  PubMed  CAS  Google Scholar 

  126. Faust JB, Meeker TC: Amplification and expression of the bcl-1 gene in human solid tumor cell lines. Cancer Res 52:2460–2463, 1992.

    PubMed  CAS  Google Scholar 

  127. Richard CW, Withers DA, Meeker TC, Maurer S, Evans G, Myers RM, Cox DR: A radiation hybrid map of the proximal long arm of human chromosome 11 containing the MEN-1 and bcl-l disease loci. Am J Human Genet 49:1189–1196, 1991.

    CAS  Google Scholar 

  128. Moscow JA, Townsend AJ, Goldsmith ME, Whang-Peng J, Vickers PJ, Poisson R, Legault-Poison S, Myers CE, Cowan KH: Isolation of the human anionic glutathione S-transferase cDNA and the relation of its gene expression to estrogen receptor content in primary breast cancer. Proc Natl Acad Sci USA 85:6518–6522, 1988.

    Article  PubMed  CAS  Google Scholar 

  129. Hill DL: N,N′-bis(2-chloroethyl)-N-nitrosourea (BCNU), a substrate for glutathione (GSH) S-transferase. Proc Am Assoc Cancer Res 17:52, 1976.

    Google Scholar 

  130. Dulik DM, Fenselau C, Hilton J: Characterization of melphalan-glutathione adducts whose formation is caalyzed by glutathione transferases. Biochem Pharmacol 35: 3405–3409, 1986.

    Article  PubMed  CAS  Google Scholar 

  131. Shea TC, Kelley SC, Henner WD: Identification of an anionic form of glutathione transferase present in many human tumors and tumor cell lines. Cancer Res 48:527–533, 1988.

    PubMed  CAS  Google Scholar 

  132. Dillio C, Del Boccio G, Aceto A, Cassacia R, Mucilli F: Elevation of glutathione transferase activity in human lung tumor. Carcinogenesis 9:335–340, 1988.

    Article  Google Scholar 

  133. Moscow JA, Fairchild CR, Madden MJ, Ramson DT, Wieand HS, O’Brien EE, Poplack DG, Cossman J, Myers CE, Cowan KH: Expression of anionic glutathione S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res 49:1422–1428, 1989.

    PubMed  CAS  Google Scholar 

  134. Toffoli G, Frustaci S, Tumiotto L, Talamini R, Gherlinzoni F, Picci P, Boiocchi M: Expression of MDR1 and GST-π in human soft tissue sarcomas: Relation to drug resistance and biologic aggressiveness. Ann Oncol 3:63–69, 1992.

    PubMed  CAS  Google Scholar 

  135. Saint-Ruf C, Malfoy B, Scholl S, Zafrani B, Dutrillaux B: GST-π gene is frequently coamplified with INT-2 and HSTF1 proto-oncogenes in human breast cancers. Oncogene 6:403–406, 1991.

    PubMed  CAS  Google Scholar 

  136. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P: Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79: 7837–7841, 1982.

    Article  PubMed  CAS  Google Scholar 

  137. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM: Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827, 1982.

    Article  PubMed  CAS  Google Scholar 

  138. Dalla-Favera R, Wong-Staal F, Gallo R: Myc gene amplification in promyelocytic leukaemic cell line HL-60 and primary leukaemic cells of the same patient. Nature 299:61–63, 1982.

    Article  PubMed  CAS  Google Scholar 

  139. Collins S, Grondine M: Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 298:679–681, 1982.

    Article  PubMed  CAS  Google Scholar 

  140. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD: Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196, 1983.

    Article  PubMed  CAS  Google Scholar 

  141. Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM: Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711, 1983.

    Article  PubMed  CAS  Google Scholar 

  142. Slamon DJ, deKernion JB, Verna IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224:256–262, 1984.

    Article  PubMed  CAS  Google Scholar 

  143. Kelly K, Cochran BH, Stiles CD, Leder P: Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  144. Lacy J, Sarkar SN, Summers WC: Induction of c-mycA expression in human B lymphocytes by B-cell growth factor and anti-immunoglobulin. Proc Natl Acad Sci USA 83:1458–1462, 1986.

    Article  PubMed  CAS  Google Scholar 

  145. Concience J-F, Verrier B, Martin G: Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hematopoietic cell lines. EMBO J 5:317–323, 1986.

    Google Scholar 

  146. Makino R, Hayashi K, Sugimura T: c-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment. Nature 312:716–720, 1984.

    Article  Google Scholar 

  147. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MMTV/myc fusion genes. Cell 38:627–637, 1984.

    Article  PubMed  CAS  Google Scholar 

  148. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P: Coexpression of MMTV/ v-Ha-ras and MMTV/c-myc in transgenic mice: Synergistic actions of oncogenes in vivo. Cell 49:465–475, 1987.

    Article  PubMed  CAS  Google Scholar 

  149. Schonenberger CA, Andres AC, Groner B, Van der Valk M, Le Meur M, Gerlinger P: Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription. EMBO J 7:169–175, 1988.

    Google Scholar 

  150. Liu E, Santos G, Lee WMF, Osborne CK, Benz CC: Effects of c-myc overexpression on the growth characteristics of MCF-7 human breast cancer cells. Oncogene 4:979–984, 1989.

    PubMed  CAS  Google Scholar 

  151. Santos GF, Scott GK, Lee WMF, Liu E, Benz CC: Estrogen-induced post transcriptional modulation of c-myc proto-oncogene expression in human breast cancer cells. J Biol Chem 263:9565–9568, 1988.

    PubMed  CAS  Google Scholar 

  152. Van der Berg B, Van Selm-Miltenberg AJ, DeLaat SW, Van Zoelen EJ: Direct effects of estrogen on c-fos and c-myc protooncogene expression and cellular proliferation in human breast cancer cells. Mol Cell Endocrinol 64:223–228, 1988.

    Google Scholar 

  153. Wong MS, Murphy LC: Differential regulation of c-myc by progestins and antiestrogens in T-470 human breast cancer cells. J Steroid Biochem Mol Bio 39:39–44, 1991.

    Article  CAS  Google Scholar 

  154. Watson PH, Pon RT, Shiu RPC: Inhibition of c-myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c-myc in the growth of human breast cancer. Cancer Res 51:3996–4000, 1991.

    PubMed  CAS  Google Scholar 

  155. Benz CC, Scott GK, Santos GF, Smith HS: Expression of c-myc, c-Ha-ras and c-erbB-2 proto-oncogenes in normal and malignant breast epithelial cells. J Natl Cancer Inst 81:1704–1709, 1989.

    Article  PubMed  CAS  Google Scholar 

  156. Kozbor D, Croce CM: Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44:438–441, 1984.

    PubMed  CAS  Google Scholar 

  157. Modjtahedi N, Lavialle C, Poupon M-F, Landin R-M, Cassingena R, Monier R, Brisson O: Increased level of amplification of the c-myc oncogene in tumors induced in nude mice by a human breast carcinoma cell line. Cancer Res 45:4372–4379, 1985.

    PubMed  CAS  Google Scholar 

  158. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme M-H, Gest J, Callahan R: Genetic alteration of the c-myc protooncogene (myc) in human primary breast carcinomas. Proc Natl Acad Sci USA 83:4834–4838, 1986.

    Article  PubMed  CAS  Google Scholar 

  159. Zhou D-J, Carre MJ: Proto-oncogene abnormalities in human breast cancer: c-erbB-2 amplification does not correlate with recurrence of disease. Oncogene 4:105–108, 1989.

    PubMed  CAS  Google Scholar 

  160. Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P: In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 80:665–671, 1988.

    Article  PubMed  CAS  Google Scholar 

  161. Cline MJ, Battifora H, Yokota J: Proto-oncogene abnormalities in human breast cancer: Correlations with anatomic features and clinical course of disease. J Clin Oncol 5: 999–1006, 1987.

    PubMed  CAS  Google Scholar 

  162. Varley JM, Swallow JE, Brammar WJ, Whittaker JL, Walker RA: Alterations to either c-erbB-2 (neu or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene 1:423–430, 1987.

    PubMed  CAS  Google Scholar 

  163. Tsuda H, Hirohashi S, Hirota T, Shimosato Y: Alterations in copy number of c-erbB-2 and c-myc proto-oncogenes in advanced stage of human breast cancer. Acta Pathol Japon 41:19–23, 1991.

    CAS  Google Scholar 

  164. Donovan-Peluso M, Contento AM, Tobon H, Ripepi B, Locker J: Oncogene amplification in breast cancer. Am J Pathol 138:835–45, 1991.

    PubMed  CAS  Google Scholar 

  165. Garcia I, Dietrich PY, AApro M, Vauthier G, Vadas L, Engel E: Genetic alterations of c-myc, c-erbB-2 and c-Ha-ras proto-oncogenes and clinical associations in human breast carcinomas. Cancer Res 49:6675–6679, 1989.

    PubMed  CAS  Google Scholar 

  166. Tavassoli M, Quirke P, Farzaneh F, Lock NJ, Mayne LV, Kirkham N: c-erbB-2/c-erbA co-amplification indicative of high tumor grade in human breast carcinoma. Br J Cancer 60:505–510, 1989.

    Article  PubMed  CAS  Google Scholar 

  167. Brouillet JP, Theillet C, Maudelonde T, Defrenne A, Simony-Lafontaine J, Sertour J, Pujol H, Jeanteur P, Rochefort H: Cathepsin D assay in primary breast cancer and lymph nodes: Relationship with c-myc, c-erbB-2 and int-2 oncogene amplification and node invasiveness. Eur J Cancer 26:437–441, 1990.

    Article  PubMed  CAS  Google Scholar 

  168. Guerin M, Barrois M, Terrier MJ, Spielman M, Riou G: Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: A correlation with poor prognosis. Oncol Res 3:21–31, 1988.

    CAS  Google Scholar 

  169. LeRoy X, Escot C, Brouillet JP, Theillet C, Maudelonde T, Simony-Lafontaine J, Pujol H, Rochefort H: Decrease of c-erbB-2 and c-myc RNA levels in tamoxifen-treated breast cancer. Oncogene 6:431–437, 1991.

    CAS  Google Scholar 

  170. Spandidos DA, Yiagnisis M, Papadimitriou K, Field JK: ras, c-myc and c-erbB-2 oncoproteins in human breast cancer. Anticancer Res 9:1385–1893, 1989.

    PubMed  CAS  Google Scholar 

  171. Locker AP, Dowle CS, Ellis IO, Elston CW, Blarney RW, Sikara K, Evan G, Robins RA: c-myc oncogene product expression and prognosis in operable breast cancer. Br J Cancer 60:669–672, 1989.

    Article  PubMed  CAS  Google Scholar 

  172. Spandidos DA, Pintzas A, Kakkanas A, Yiagnisis M, Mahera E, Patra E, Agnantis NJ: Elevated expression of the myc gene in human benign and malignant lesions compared to normal tissue. Anticancer Res 7:1299–1304, 1987.

    PubMed  CAS  Google Scholar 

  173. Papamichalis G, Francia K, Karachaliou FF, Anastassaides OTL, Spandidos DA: Expression of the c-myc oncoprotein in human metaplastic epithelial cells of fibrocystic disease. Anticancer Res 8:1223–1228, 1989.

    Google Scholar 

  174. Spandidos DA, Field JK, Agnantis NF, Evan GI, Moore JP: High levels of c-myc oncoprotein in human breast tumors determined by a sensitive ELIS A technique. Anticancer Res 9:821–826, 1989.

    PubMed  CAS  Google Scholar 

  175. Bos JL: Ras oncogenes in human cancer: A review. Cancer Res 49:4682–4689, 1989.

    PubMed  CAS  Google Scholar 

  176. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JW, van der Eb AJ, Vogelstein B: Prevalence of ras gene mutations in human colorectal cancers. Nature 327:293–297, 1987.

    Article  PubMed  CAS  Google Scholar 

  177. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M: Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327:298–303, 1987.

    Article  PubMed  CAS  Google Scholar 

  178. Almoguera C, Shibata D, Forrester K, Martin J, Annheim N, Perrucho M: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554,1988.

    Article  PubMed  CAS  Google Scholar 

  179. Rodenhuis S, Van de Wetering ML, Mooi WJ, Evers SG, Van Zandwijk N, Bos JL: Mutational activation of the K-ras oncogene: A possible pathogenetic factor in adenocarcinoma of the lung. N Engl J Med 317:929–935, 1987.

    Article  PubMed  CAS  Google Scholar 

  180. Rochlitz CF, Scott GK, Dodson JM, Liu E, Dollbaum C, Smith HS, Benz CC: Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360, 1989.

    PubMed  CAS  Google Scholar 

  181. Sukumar S, Notario V, Martin-Zanka D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methyl urea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–661, 1983.

    Article  PubMed  CAS  Google Scholar 

  182. Zarble H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385, 1988.

    Article  Google Scholar 

  183. Andres AC, Schoenenberger CA, Groner B, Hennighausen L, LeMeur M, Gerlinger P: Ha-ras oncogene expression directed by a milk protein promoter: Tissue specificity, hormonal regulation and tumor induction in transgenic mice. Proc Natl Acad Sci USA 84:1299–1303, 1987.

    Article  PubMed  CAS  Google Scholar 

  184. Andres AC, Behini O, Schubaur B, Dolder B, LeMeur M, Gerlenger P: H-ras induced transformation of mammary epithelium is favoured by increased oncogene expression or by inhibition of mammary regression. Oncogene 6:771–779, 1991.

    PubMed  CAS  Google Scholar 

  185. Kasid A, Lippman ME, Papageorge AG, Lowy DR, Gelmann EP: Transfection of v-ras-H DNA into MCF-7 human breast cancer cells bypasses dependence on estrogen for tumorigenicity. Science 228:725–728, 1985.

    Article  PubMed  CAS  Google Scholar 

  186. Isonishi S, Horn DK, Thiebaut FB, Mann SC, Andrews PA, Basu A, Lazo JS, Eastman A, Howell SB: Expression of the c-Ha-ras oncogene in mouse NIH3T3 cells produces resistance to cisplatinum. Cancer Res 51:5903–5909, 1991.

    PubMed  CAS  Google Scholar 

  187. Thor A, Ohuchi N, Horan Hand P, Callahan R, Weeks MO, Theillet C, Lidereau R, Escot C, Page D, Vilasi V, Schlom J: ras gene alterations and enhanced levels of ras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55:603–615, 1986.

    PubMed  CAS  Google Scholar 

  188. Saglio G, Camaschella C, Giai M, Serra A, Guerrasio A, Peirone B, Gasparini P, Mazza U, Cappellini R, Biglia N: Distribution of Ha-rs-1 proto-oncogene alleles in breast cancer patients and a control population. Breast Cancer Res Treat 11:147–153, 1988.

    Article  PubMed  CAS  Google Scholar 

  189. Spandidos DA, Agnantis NJ: Human malignant tumors of the breast as compared to their normal tissue, have elevated expression of the Harvey-ras oncogene. Anticancer Res 4:269–272, 1984.

    PubMed  CAS  Google Scholar 

  190. Biunno I, Pozzi MR, Pierotti MA, Pilotti S, Cattoretti G, Delia Porta G: Structure and expression of oncogenes in surgical specimens of human breast carcinomas. Br J Cancer 57:464–468, 1988.

    Article  PubMed  CAS  Google Scholar 

  191. Whittaker JL, Walker RA, Varley JM: Differential expression of cellular oncogenes in benign and malignant human breast tissue. Int J Cancer 38:651–655, 1986.

    Article  PubMed  CAS  Google Scholar 

  192. Agnantis NJ, Parissi P, Anagnostakis D, Spandidos DA: Comparative study of Harvey ras oncogene expression with conventional clinicopathological parameters of breast cancer. Oncology 43:36–39, 1986.

    Article  PubMed  CAS  Google Scholar 

  193. Horan Hand P, Vilasi V, Thor A, Ohuchi N, Schlom J: Quantitaten of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 79:59–65, 1987.

    Google Scholar 

  194. Agnantis NJ, Petraki C, Markoulatos P, Spandidos DA: Immunohistochemical study of the ras oncogene expression in human breast lesions. Anticancer Res 6:1157–1160, 1986.

    PubMed  CAS  Google Scholar 

  195. Ohuchi N, Thor A, Page DI, Horan Hand P, Halter S, Schlom J: Expression of the 21,000 molecular weight ras protein in a spectrum of benign and malignant human mammary tissues. Cancer Res 46:2511–2519, 1986.

    PubMed  CAS  Google Scholar 

  196. Clair T, Miller WR, Cho-Chung YS: Prognostic significance of the expression of a ras protein with a molecular weight of 21,000 by human breast cancer. Cancer Res 47:5290–5293, 1987.

    PubMed  CAS  Google Scholar 

  197. Lundy J, Grimson R, Mishriki Y, Chao S, Oravez S, Fromowitz F, Viola MV: Elevated ras oncogene expression correlates with lymph node métastases in breast cancer patients. J Clin Oncol 4:1321–1325, 1986.

    PubMed  CAS  Google Scholar 

  198. Watson DM, Elton RA, Jack WJ, Dixon JM, Chetty U, Miller WR: The H-ras oncogene product p21 and prognosis in human breast cancer. Breast Cancer Res Treat 17:161–169, 1991.

    Article  PubMed  CAS  Google Scholar 

  199. Dati C, Muraca R, Tazartes OM, Antoniotti S, Perrofeau I, Giai M, Cortese P, Sismondi Saglio S, Di Bartoli M: c-erbB-2 and ras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome. Int J Cancer 47:833–838, 1991.

    Article  PubMed  CAS  Google Scholar 

  200. Hainsworth PJ, Henderson MA, Stillwell RG, Bennet RC: Comparison of EGFR, c-erbB-2 product and ras p21 immunohistochemistry as prognostic markers in primary breast cancer. Eur J Surg Oncol 17:9–15, 1991.

    PubMed  CAS  Google Scholar 

  201. Querzoli P, Marchetti E, Bagni A, Marzola A, Fabris G, Nanci I: Expression of p21 ras gene products in breast cancer relates to histological types and to receptor and nodal status. Breast Cancer Res Treat 12:23–30, 1988.

    Article  PubMed  CAS  Google Scholar 

  202. Tanaka T, Slamon DJ, Battifora H, Cline MJ: Expression of p21 ras oncoprotein in human cancers. Cancer Res 46:1465–1470, 1986.

    PubMed  CAS  Google Scholar 

  203. Candlish W, Kerr IB, Simpson HW: Immunocytochemical demonstration and significance of p21 ras family oncogene product in benign and malignant breast disease. J Pathol 150:163–167, 1986.

    Article  PubMed  CAS  Google Scholar 

  204. Horan Hand P, Thor A, Wienderlich D, Muravo R, Caruso A, Schlom J: Monoclonal antibodies of predefined specificity detects activated ras gene expression in human mammary and colon carcinoma. Proc Natl Acad Sci USA 81:5227–5231, 1984.

    Article  Google Scholar 

  205. Fromowitz FB, Viola MV, Chao S, Oravez S, Mishriki Y, Finkel G, Grimson R, Lundy J: ras p21 expression in the progression of breast cancer. Human Pathol 18:1268–1275, 1987.

    Article  CAS  Google Scholar 

  206. Czerniak B, Chen R, Tuziak K, Markrewski M, Kram A, Gorczyca W, Deitch C, Herz F, Koss LG: Expression of ras oncogene p21 protein in relation to regional spread of human breast carcinomas. Cancer 63:2008–2013, 1989.

    Article  PubMed  CAS  Google Scholar 

  207. Nobumoto W, Van de Woude GF, Ikawa Y, Sagata N: Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of xenopus eggs. Nature 342:505–511, 1989.

    Article  Google Scholar 

  208. Sagata N, Watanabe N, Van de Woude GF, Ikawa Y: The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342:512–518, 1989.

    Article  PubMed  CAS  Google Scholar 

  209. Lidereau R, Mathieu-Mahul D, Theillet C, Renaud M, Mauchauffe M, Gest J, Larsen CJ: Presence of an allelic Eco RI restriction fragment of the c-mos locus in leukocyte and tumor cells DNAs of breast cancer patients. Proc Natl Acad Sci USA 82:7068–7070, 1985.

    Article  PubMed  CAS  Google Scholar 

  210. Lidereau R, Cole ST, Larsen CJ, Mathieu-Mahul D: A single point mutation responsible for c-mos polymorphism in cancer patients. Oncogene 1:235–237, 1987.

    PubMed  CAS  Google Scholar 

  211. Hall JM, Zuppan PJ, Anderson LA, Huey B, Carter C, King M-C: Oncogenes and human breast cancer. Am J Hum Genet 44:577–584, 1989.

    PubMed  CAS  Google Scholar 

  212. Curran T, Franza BR: Fos and jun: The AP-I connection. Cell 55:395–397, 1988.

    Article  PubMed  CAS  Google Scholar 

  213. Sorokine I, Ben-Mahrez K, Bracone A, Thierry D, Ishii S, Imamoto F, Kohiyama M: Presence of circulating anti-c-myft oncogene product antibodies in human sera. Int J Cancer 47:665–669, 1991.

    Article  PubMed  CAS  Google Scholar 

  214. Guerin M, Sheng Z-M, Andrieu N, Riou G: Strong association between c-myb and estrogen receptor expression in human breast cancer. Oncogene 5:131–135, 1990.

    PubMed  CAS  Google Scholar 

  215. Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M, Schlessinger J, Jeanteur P, Birnbaum D, Theillet C: BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6:659–666, 1991.

    PubMed  CAS  Google Scholar 

  216. Shih C, Padhy LC, Murray M, Weinberg RA: Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261–264, 1981.

    Article  PubMed  CAS  Google Scholar 

  217. Schecter AC, Stern BF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI, Weinberg RA: The neu oncogene: An erh-B-related gene encoding a 185,000-Mr tumour antigen. Nature 312:513–516, 1984.

    Article  Google Scholar 

  218. Schecter, Hung M-C, Vaidyanathan L, Weinberg RA, Yang-Feng TL, Francke U, Ullrich A, Coussens L: The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 976–978, 1985.

    Google Scholar 

  219. Coussens L, Yang-Feng TL, Liao Y-C, Chen E, Gray A, McGrath J, Seeberg PH, Libermann TW, Schlessinger J, Francke U, Levinson A, Ullrich A: Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139, 1985.

    Article  PubMed  CAS  Google Scholar 

  220. Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K: Similarity to protein encoded by the human c-erbB-2 gene to epidermal growth factor receptor. Nature 319:230–234, 1986.

    Article  PubMed  CAS  Google Scholar 

  221. DiFiore PP, Pierce JW, Kraus MH, Segatto O, King CR, Aaronson SA: ErbE-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237:178–182, 1987.

    Article  CAS  Google Scholar 

  222. Stern DF, Kamps MP, Cao H: Oncogenic activation of pl85 neu stimulates tyrosine phosphorylation in vivo. Mol Cell Biol 5:3969–3973, 1988.

    Google Scholar 

  223. Wildenhain Y, Pawson T, Blackstein ME, Andrulis IL: pl85 neu is phosphorylated on tyrosine in human breast tumors which overexpress neu/erbB-2. Oncogene 879–883, 1990.

    Google Scholar 

  224. Sarup JC, Johnson RM, King KL, Fendly BM, Lipari MT, Napier MA, Ullrich A, Shepard HM: Characterization of an anti-pl85HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Reg 1:72–82, 1991.

    CAS  Google Scholar 

  225. Scott GK, Dodson JM, Montgomery PA, Johnson RM, Sarup JC, Wong WL, Ullrich A, Shepard HM, Benz CC: pl85HER2 signal transduction in breast cancer cells. J Biol Chem 266:14300–14305, 1991.

    PubMed  CAS  Google Scholar 

  226. Bargmann CI, Hung M-C, Weinberg RA: Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domains of pl85. Cell 73: 649–657, 1986.

    Article  Google Scholar 

  227. Bargmann CI, Weinberg RA: Oncogenic activation of the new-encoded receptor protein by point mutation and deletion. EMBO J 7:2043–2052, 1988.

    PubMed  CAS  Google Scholar 

  228. Weiner DB, Liu J, Cohen JA, Williams WV, Greene MI: A point mutation in the neu oncogene mimics ligand induction of receptor aggregation. Nature 339:230–231, 1989.

    Article  PubMed  CAS  Google Scholar 

  229. MÜller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115, 1988.

    Article  PubMed  Google Scholar 

  230. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P: Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936, 1989.

    Article  PubMed  CAS  Google Scholar 

  231. King CR, Kraus MH, Aaronson SA: Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229:974–976, 1985.

    Article  PubMed  CAS  Google Scholar 

  232. Fukushige S-I, Matsubara K-I, Yoshida M, Sasaki M, Suzuki T, Semba K, Toyoshima K, Yamamoto T: Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6:955–958, 1986.

    PubMed  CAS  Google Scholar 

  233. Semba K, Kamata N, Toyoshima K, Yamamoto T: A v-er6B-related proto-oncogene c-erbB-2, is distinct from the c-er6B-l/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 82:6497–6501, 1985.

    Article  PubMed  CAS  Google Scholar 

  234. Kraus MH, Popescu NC, Amsbaugh SC, King CR: Overexpression of the EGF receptor-related proto-oncogene erbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6:605–610, 1987.

    PubMed  CAS  Google Scholar 

  235. Tal M, King CR, Kraus MH, Ullrich A, Schlessinger J, Givol D: Human HER2 (neu) promoter: Evidence for multiple mechanisms for transcriptional initiation. Mol Cell Biol 7:2597–2601, 1987.

    PubMed  CAS  Google Scholar 

  236. Kallioniemi O-P, Kallioniemi A, Chen L-C, Thor A, Kurisu W, Thor A, Chen LC, Smith HS, Waldman FM, Pinkel D, Gray JW: ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA 89:5321–5325, 1992.

    Article  PubMed  CAS  Google Scholar 

  237. Lemoin NR, Staddon S, Dickson S, Barnes DM, Gullick WJ: Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 5:237–239, 1990.

    Google Scholar 

  238. Saya H, Ara S, See PS, Ro J, Hung M-C: Direct sequencing analysis of transmembrane regions of the human neu gene by polymerase chain reaction. Mol Carcinogen 3:198–201, 1990.

    Article  CAS  Google Scholar 

  239. Hudziak RM, Schlessinger J, Ullrich A: Increased expression of the putative growth factor receptor pl85HER2 causes transformation and tumorigenesis of NIH3T3 cells. Proc Natl Acad Sci USA 84:7159–7163, 1987.

    Article  PubMed  CAS  Google Scholar 

  240. Hudziak RM, Lewis GD, Shalaby MR, Eessalu TE, Aggarwal BB, Ullrich A, Shepard HM: Amplified expression of the HER2/erbB-2 oncogene induces resistance to tumor necrosis factor a in NIH3T3 cells. Proc Natl Acad Sci USA 85:5102–5106, 1988.

    Article  PubMed  CAS  Google Scholar 

  241. Segatto O, King CR, Pierce JH, DiFiore PP, Aaronson SA: Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene. Mol Cell Biol 8:5570–5574, 1988.

    PubMed  CAS  Google Scholar 

  242. Wildenhain Y, Pawson T, Blackstein ME, Andrulis IL: pl85new is phosphorylated on tyrosine in human primary breast tumors which overexpress neulerbB-2. Oncogene 5: 879–883, 1990.

    PubMed  CAS  Google Scholar 

  243. Suda Y, Aizawa S, Furuta Y, Yagi T, Ikawa Y, Saitoh K, Yamada Y, Toyoshima K, Yamamoto T: Induction of a variety of tumors by c-erbB-2 and clonal nature of lymphomas even with the mutated gene (Val659-Glu659). EMBO J 9:181–190, 1990.

    PubMed  CAS  Google Scholar 

  244. Pierce JH, Arnstein P, DiMarco E, Artrip J, Kraus MH, Lenardo F, DiFiore PP, Aaronson SA: Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene 6:1189–1194, 1991.

    PubMed  CAS  Google Scholar 

  245. Benz CC, Scott GK, Sarup JCK, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK: Estrogen-dependent tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/mev. Breast Cancer Res. Treatment. In press, 1992.

    Google Scholar 

  246. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182, 1987.

    Article  PubMed  CAS  Google Scholar 

  247. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, Press MF: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712, 1989.

    Article  PubMed  CAS  Google Scholar 

  248. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, Soper JT, Dodge R, Clarke-Pearson DL, Marks P, McKenzie S, Yin S, Bast RC: Overexpression of HER-2/neu associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50:4087–4091, 1990.

    PubMed  CAS  Google Scholar 

  249. Kern JA, Schwartz DA, Nordberg JE, Weiner DB, Greene MI, Torney L, Robinson RA: pl85neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 50:5184–5191, 1990.

    PubMed  CAS  Google Scholar 

  250. Borg A, Tandon AK, Sigurdsson H, Clark GM, Ferno Marten, Fuqua SAW, Killander D, McGuire WL: HEK-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res 50:7332–7337, 1990.

    Google Scholar 

  251. Tandon AK, Clark GM, Chamness GC, Ullrich A, McGuire WL: HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 7:1120–1128, 1989.

    PubMed  CAS  Google Scholar 

  252. Thor AD, Schwartz LH, Koerner FC, Edgerton SM, Skates SJ, Yin S, McKenzie SJ, Panicali DL, Marks PJ, Fingert HF, Wood WC: Analysis of c-erbB-2 expression in breast carcinomas with clinical follow-up. Cancer Res 49:7147–7152, 1989.

    PubMed  CAS  Google Scholar 

  253. Wright C, Angus B, Nicholson S, Sainsbury JRC, Cairns J, Gullick WJ, Kelley P, Harris AH, Hörne CHW: Expression of c-erbB-2 oncoprotein: A prognostic indicator in human breast cancer. Cancer Res 49, 2087–2090, 1989.

    PubMed  CAS  Google Scholar 

  254. Gullick WJ, Love SB, Wright C, Barnes DM, Gusterson B, Harris AL, Altman DG: c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes. Br J Cancer 63:434–438, 1991.

    Article  PubMed  CAS  Google Scholar 

  255. Anbazhagan R, Gelber RD, Bettelheim R, Goldhirsch A, Gusterson BA: Association of c-erbB-2 expression and S-phase fraction in the prognosis of node positive breast cancer. Ann Oncol 2:47–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  256. Walker RA, Gullick WJ, Varley JM: An evaluation of immunoreactivity for c-erbB-2 protein as a marker of poor short-term prognosis in breast cancer. Br J Cancer 60: 426–429, 1989.

    Article  PubMed  CAS  Google Scholar 

  257. Borresen A-L, Ottestad L, Gaustad A, Andersen TI, Heikkila R, Jahnsen T, Tveit KM, Nesland JM: Amplification and protein over-expression of the neu/HER-2/c-erbB-2 protooncogene in human breast carcinomas: Relationship to loss of gene sequences on chromosome 17, family history and prognosis. Br J Cancer 62:585–590, 1990.

    Article  PubMed  CAS  Google Scholar 

  258. McCann AH, Dervan PA, O’Regan M, Codd MB, Gullick WJ, Tobin BM, Carney DN: Prognostic significance of c-erbB-2 and estrogen receptor status in human breast cancer. Cancer Res 51:3296–3303, 1991.

    PubMed  CAS  Google Scholar 

  259. Dykins R, Corbett IP, Henry JA, Wright C, Yuan J, Henessy C, Lennard TJ, Angus B, Hörne CH: Long-term survival in breast cancer related to overexpression of the c-erbB-2 oncoprotein: An immunohistochemical study using monoclonal antibody NCL-CBII. J Pathol 163:105–110, 1991.

    Article  PubMed  CAS  Google Scholar 

  260. Paik S, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR: Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: Prognostic significance of erbB-2 protein overexpression in primary breast cancer. J Clin Oncol 8:103–112, 1990.

    PubMed  CAS  Google Scholar 

  261. Ro J, El-Naggar A, Ro JY, Blick M, Frye D, Fraschini G, Fritsche H, Hortobagyi G: c-erbB-2 amplification in node-negative human breast cancer. Cancer Res 49:6941–6944, 1989.

    PubMed  CAS  Google Scholar 

  262. Parks HC, Lillycrop K, Howell A, Craig RK: c-erbB-2 mRNA expression in human breast tumors: Comparison with c-erbB-2 DNA amplification and correlation with prognosis. Br J Cancer 61:39–45, 1990.

    Article  Google Scholar 

  263. Lovekin C, Ellis IO, Locker A, Robertson JFR, Bell J, Nicholson R, Gullick WJ, Elston CW, Blarney RW: c-erbB-2 oncoprotein expression in primary and advanced breast cancer. Br J Cancer 63:439–443, 1991.

    Article  PubMed  CAS  Google Scholar 

  264. Wistanley J, Cooke T, Murray GD, Platt-Higgins A, George WD, Holt S, Myskov M, Spedding A, Barraclough BR, Rudland PS: The long term prognostic significance of c-erbB-2 in primary breast cancer. Br J Cancer 63:447–450, 1991.

    Article  Google Scholar 

  265. Rilke F, Colnaghi MI, Cascinelli N, Andreola S, Baldini MT, Bufalino R, Delia Porta G, Menard S, Pierotti MA, Testori A: Prognostic significance of HER-2/neu expression in breast cancer and its relationship to other prognostic factors. Int J Cancer 49:44–49, 1991.

    Article  PubMed  CAS  Google Scholar 

  266. O’Reilly SM, Barnes OM, Camplejohn RS, Bartkova J, Gregory WM, Richards MA: The relationship between c-erbB-2 expression, S-phase fraction and prognosis in breast cancer. Br J Cancer 63:444–446, 1991.

    Article  CAS  Google Scholar 

  267. May E, Mouriesse H, May-Levin F, Qian JF, May P, Delarve JC: Human breast cancer; identification of populations with a high risk of early relapse in relation to both oestrogen receptor status and c-erbB-2 overexpression. Br J Cancer 62:430–435, 1990.

    Article  PubMed  CAS  Google Scholar 

  268. AH IU, Campbell G, Lidereau R, Callahan R: Lack of evidence for the prognostic significance of c-erbB-2 amplification in human breast carcinoma. Oncogene Res 3:139–146, 1988.

    Google Scholar 

  269. Heintz NH, Leslie KO, Rogers LA, Howard PL: Amplification of the c-erbB-2 oncogene and prognosis of breast adenocarcinoma. Arch Pathol Lab Med 114:160–163, 1990.

    PubMed  CAS  Google Scholar 

  270. Gusterson BA, Machin LG, Gullick WJ, Gibbs NM, Powles TJ, Elliot C, Ashley S, Monaghan P, Harrison S: c-erbB-2 expression in benign and malignant breast disease. Br J Cancer 58:453–457, 1988.

    Article  PubMed  CAS  Google Scholar 

  271. Van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, NÜsse R: Afeu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 391:1239–1245, 1988.

    Article  Google Scholar 

  272. Barnes DM, Lammie GA, Millis RR, Gullick WJ, Allen DS, Altman DG: An immunohistochemical evaluation of c-erbB-2 expression in human breast carcinoma. Br J Cancer 58:448–452, 1988.

    Article  PubMed  CAS  Google Scholar 

  273. Paterson MC, Dietrich KD, Danyluk J, Paterson AGH, Lees AW, Jamil N, Hanson J, Jenkins H, Krause BE, McBlain WA, Slamon DJ, Fourney RM: Correlation between c-erbB-2 amplification and risk of recurrent disease in node-negative breast cancer. Cancer Res 51:556–567, 1991.

    PubMed  CAS  Google Scholar 

  274. Richner J, Gerber HA, Locher GW, Goldhirsh A, Gelber RD, Gullick WJ, Berger MS, Groner B, Hynes NE: c-erbB-2 protein expression in node negative cancer. Annals Oncol 1:263–268, 1990.

    CAS  Google Scholar 

  275. Wright C, Nicholson S, Angus B, Sainsbury JRC, Farndon J, Cairns J, Harris AL, Home CHW: Relationship between c-erbB2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer 65:118–121, 1992.

    Article  PubMed  CAS  Google Scholar 

  276. Berns PMJJ, Klijn JGM, Van Staveren IL, Portengen H, Noordegraaf E, Foekens JA: Frequency and relevance of (onco)-gene amplification in human breast tumors. Proc Am Assoc Cancer Res 32:291, 1991.

    Google Scholar 

  277. Berger MS, Locker GW, Saurer S, Gullick WJ, Waterfield MD, Gronerl B, Hynes NE: Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48:1238–1243, 1989.

    Google Scholar 

  278. Guerin M, Gabillot M, Mathieu M-C, Travagli J-P, Spielmann M, Andrieu N, Riou G: Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: Prognostic significance. Int J Cancer 43:201–208, 1989.

    Article  PubMed  CAS  Google Scholar 

  279. Querzoli P, Marchetti E, Fabris G, Marzola A, Ferretti S, Iacobelli S, Hazan R, King CR, Nenci I: Immunohistochemical expression of c-erbB-2 in human breast cancer by monoclonal antibody: Correlation with lymph node and ER status. Tumori 76:461–464, 1990.

    PubMed  CAS  Google Scholar 

  280. Seshadri R, Matthews C, Dubrovic A, Horsfall DJ: The significance of oncogene amplification in primary breast cancer. Int J Cancer 43:270–272, 1989.

    Article  PubMed  CAS  Google Scholar 

  281. Lacroix H, Iglehart JD, Skinner MA, Kraus MH: Overexpression of erbB-2 or EGF receptor proteins in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional métastases. Oncogene 4:145–151, 1989.

    PubMed  CAS  Google Scholar 

  282. Zeillinger R, Kury F, Czerwenka K, Kubista E, Sliutz G, Knogler W, Huber W, Zielinski C, Reiner G, Jakesz R, Staffen A, Reiner A, Wrba F, Spona F: HER-2 amplification steroid receptors and epidermal growth factor receptor in primary breast cancer. Oncogene 4:109–114, 1989.

    PubMed  CAS  Google Scholar 

  283. Rio MC, Bellocq JP, Gairard B, Rasmussin UB, Krust A, Koehl C, Calderoli H, Schiff V, Renaud R, Chambon P: Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the oestrogen and progesterone receptors and the oncogene ERBB-2. Proc Natl Acad Sci USA 84:9243–9247, 1987.

    Article  PubMed  CAS  Google Scholar 

  284. Borg A, Sigurasson H, Tandon AK, Clarke GM, Ferno M, Killander D, McGuire WL: Proto-oncogene amplification in human breast cancer. Nordic Cancer Union Symposium, Stockholm 1989 (abstr).

    Google Scholar 

  285. Bacus SS, Bacus JW, Slamon DJ, Press MF: HER-2/neu oncogene expression and DNA polidy analysis in breast cancer. Arch Pathol Lab Med 114:164–169, 1990.

    PubMed  CAS  Google Scholar 

  286. Van Diest PJ, Baak JP, Chin D, Theeuwes JW, Bacus SS: Quantitation of HER-2/new oncoprotein overexpression in invasive breast cancer by image analysis: A study comparing fresh and paraffin-embedded material. Anal Cell Pathol 3:195–202, 1991.

    PubMed  Google Scholar 

  287. King CR, Swain SM, Porter L, Steinberg SM, Lippman ME, Gelmann EP: Heterogeneous expression of c-erbB-2 messenger RNA in human breast cancer. Cancer Res 49:4183–4191, 1989.

    Google Scholar 

  288. Venter DJ, Tuzi NL, Kumar S, Gullick WJ: Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: Immunohistological assessment correlates with gene amplification. Lancet 2:69–72, 1987.

    Article  PubMed  CAS  Google Scholar 

  289. Iglehart JD, Kraus MH, Langton BC, Huper G, Kerns BJ, Marks JR: Increased erbB-2 gene copies and expression in multiple stages of breast cancer. Cancer Res 50:6701–6707, 1990.

    PubMed  CAS  Google Scholar 

  290. Hanna W, Kahn HJ, Andrulis I, Pawson T: Distribution and patterns of staining of neu oncogene product in benign and malignant breast diseases. Modern Pathol 3:455–461, 1990.

    CAS  Google Scholar 

  291. Barnes DM, Meyer JS, Gonzalez JG, Gullick WJ, Millis RR: Relationship between c-erbB-2 immunoreactivity and thymidine labelling index in breast carcinoma in situ. Breast Cancer Res Treat 18:11–17, 1991.

    Article  PubMed  CAS  Google Scholar 

  292. Borg A, Linell F, Idvall I, Johansson S, Sigurdsson H, Ferno M, Killander D: HER-2/neu amplification and comedo type breast carcinoma. Lancet 1:1268–1269, 1989.

    Article  PubMed  CAS  Google Scholar 

  293. Porter PL, Garcia R, Moe R, Corwin DJ, Gown AM: c-erbB-2 oncogene protein in in situ and invasive lobular breast neoplasia. Cancer 68:331–334, 1991.

    Article  PubMed  CAS  Google Scholar 

  294. Soomro S, Shousha S, Taylor P, Shepard HM, Feldmann M: c-erbB-2 expression in different histologie types of invasive carcinoma. J Clin Path 44:211–214, 1991.

    Article  PubMed  CAS  Google Scholar 

  295. Liu E, Thor A, He M, Barcos M, Ljung B-M, Benz C: The HER2 (c-erbh-2) oncogenes is frequently amplified in in situ carcinomas of the breast. Oncogene 7:1027–1032, 1992.

    PubMed  CAS  Google Scholar 

  296. Drebin JA, Link VC, Stern DF: Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41:695–706, 1985.

    Article  Google Scholar 

  297. Drebin JA, Link VC, Weinberg RA: Inhibition of tumor growth by a monoclonal antibody reactive with oncogene-encoded tumor antigen. Proc Natl Acad Sci USA 83:9129–9133, 1986.

    Article  PubMed  CAS  Google Scholar 

  298. Drebin JA, Link VC, Greene MI: Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded pl85 molecule exerts synergistic anti-tumor effects. Oncogene 2:273–277, 1988.

    PubMed  CAS  Google Scholar 

  299. Drebin JA, Link VC, Greene MI: Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 2:387–394, 1988.

    PubMed  CAS  Google Scholar 

  300. Bernards R, Destree A, MacKenzie S: Effective tumor immunotherapy directed against on oncogene-encoded product using a vaccine virus vector. Proc Natl Acad Sci USA 84:6854–6858, 1987.

    Article  PubMed  CAS  Google Scholar 

  301. Fendly BM, Kotts C, Velterlein D, Lewis GD, Winget M, Carver ME, Watson SR, Sarup J, Saks S, Ullrich A: The extracellular domain of HER2/neu is a potential immunogen for active specific immunotherapy of breast cancer. J Biol Resp Modif 9:449–455, 1990.

    CAS  Google Scholar 

  302. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A: pl85HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172, 1989.

    PubMed  CAS  Google Scholar 

  303. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A: Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor of HER2/new gene product. Cancer Res 50:1550–1558, 1990.

    PubMed  CAS  Google Scholar 

  304. Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP, Shawver LK: A monoclonal antibody against the c-erbB-2 protein enhance the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 51:4575–4380, 1991.

    PubMed  CAS  Google Scholar 

  305. Colomer R, Lupu R, Gelmann EP: erbB-2 antisense oligonucleotides inhibit the growth of the breast carcinoma cells with amplified erbB-2. Proc Am Assoc Cancer Res 31:308, 1990.

    Google Scholar 

  306. Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA: Isolation and characterization of ERBB-3, a third member of the ERBB1 epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci USA 86:9193–9197, 1989.

    Article  PubMed  CAS  Google Scholar 

  307. Carpenter G: Receptors for epidermal growth factor and polypeptide mitogens. Ann Rev Biochem 56:881–914, 1987.

    Article  PubMed  CAS  Google Scholar 

  308. Fisher DA, Lakshmanan J: Metabolism and effects of epidermal growth factor and related factors in mammals. Endocrin Rev 11:418–442, 1990.

    Article  CAS  Google Scholar 

  309. Goustin AS, Leof EB, Shipley GD, Moses HL: Growth factors and cancer. Cancer Res 46:1015–1029, 1986.

    PubMed  CAS  Google Scholar 

  310. DiFiore PP, Pierce JH, Flemming TP, Hazan R, Ullrich A, King CR, Schlessinger J, Aaronson SA: Overexpression of the human EGF receptor confers and EGF-dependent transformed phenotype to NIH3T3 cells. Cell 51:1063–1070, 1988.

    Article  Google Scholar 

  311. Perroteau I, Salomon D, DeBortoli M, Kidwell W, Hazarika P, Pardue R, Dedman J, Tam J: Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Res Treat 7:201–210, 1986.

    Article  PubMed  CAS  Google Scholar 

  312. Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet J-C, Powles TJ, Coombes RC: Growth factor expression in normal, malignant and benign tissue. Br Med J 296:1621–1624, 1988.

    Article  CAS  Google Scholar 

  313. Matsui Y, Halter SA, Holt JT, Hogan BLM, Coffey RJ: Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell 61:1147–1155, 1990.

    Article  PubMed  CAS  Google Scholar 

  314. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC: Overexpression of TGFa in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61:1121–1135, 1990.

    Article  PubMed  CAS  Google Scholar 

  315. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT: TGFa overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146.

    Google Scholar 

  316. Kurachi H, Okamoto S, Oka T: Evidence for the involvement of the submandibular gland epidermal growth factor in mouse mammary tumorigenesis. Proc Natl Acad Sci USA 82:5940–5943, 1985.

    Article  PubMed  CAS  Google Scholar 

  317. Klijn JGM, Berns PM, Schmitz PI, Foekens JA: The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: A review on 5232 patients. Endocrine Rev, 13:3–17, 1992.

    CAS  Google Scholar 

  318. Marx D, Schauer A, Reiche C, May A, Ummenhofer L, Reles A, Rauschecker H, Sauer R, Schumacher M: c-erbB-2 expression in correlation to other biological parameters of breast cancer. J Cancer Res Clin Oncol 116:15–20, 1990.

    Article  PubMed  CAS  Google Scholar 

  319. Nicholson S, Wright C, Sainsbury JRC, Halcrow P, Kelly P, Angus B, Farndon JR, Harris AL: Epidermal growth factor receptor (EGFr) as a marker for poor prognosis in node-negative breast cancer patients: neu and tamoxifen failure. J Steroid Biochem Mol Biol 37:811–814, 1990.

    Article  PubMed  CAS  Google Scholar 

  320. Bacus SS, Ruby SG, Weinberg DS, Chin D, Ortiz R, Bacus JW: HER-2/neu oncogene expression and proliferation in breast cancers. Ann J Pathol 137:103–111, 1990.

    CAS  Google Scholar 

  321. Kokai Y, Myers JN, Wada T, Brown VI, LeVea CM, Davis JG, Dobashi K, Greene MI: Synergistic interaction of pl85c-neu and the EGF receptor leads to transformation of rodent fibroblasts. Cell 58:287–292, 1989.

    Article  PubMed  CAS  Google Scholar 

  322. Gullick WJ: New developments in the molecular biology of breast cancer. Eur J Cancer 26:509–510, 1990.

    Article  PubMed  CAS  Google Scholar 

  323. Stern DF, Kamps MP: EGF-stimulated tyrosine phosphorylation of p185neu: A potential model for receptor interactions. EMBO J 7:995–1001, 1988.

    PubMed  CAS  Google Scholar 

  324. Wada T, Qian X, Greene MI: Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell 61:1339–1347, 1990.

    Article  PubMed  CAS  Google Scholar 

  325. Yee D, Cullen KJ, Paik S, Perdue JF, Hampton B, Schwartz A, Lippman ME, Rosen N: Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res 48:6691–6696, 1988.

    PubMed  CAS  Google Scholar 

  326. Karey KP, Sirbasku DA: Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17-ß estradiol. Cancer Res 48:4083–4092, 1988.

    PubMed  CAS  Google Scholar 

  327. Yee D, Paik S, Lebovie G, Marcus R, Favoni R, Cullen R, Lippman ME, Rosen N: Analysis of IGF-I gene expression in malignancy—evidence for a paracrine role in human breast cancer. Mol Endocrinol 3:509–517, 1989.

    Article  PubMed  CAS  Google Scholar 

  328. Ullrich A, Bell JR, Chen FY, Herrera R, Petrozelli M, Pull TJ, Gray A, Coussens L, Liao Y-C, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J: Human insulin receptor and its relation to the tyrosine kinase family of oncogenes. Nature 313:756–761, 1985.

    Article  PubMed  CAS  Google Scholar 

  329. Massague J, Czech MP: The subunit structures of two distinct receptors for insulin like growth factors I and II and their relationship to the insulin receptor. J Biol Chem 257:5038–5045, 1982.

    PubMed  CAS  Google Scholar 

  330. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ: Insulin-like factor II receptor as a multifunctional binding protein. Nature 329:301–307, 1987.

    Article  PubMed  CAS  Google Scholar 

  331. Pekonen F, Partanen S, Makinen T, Rutanen E-M: Receptors for epidermal growth factor and insulin-like growth factor I and their relation to steroid receptors in human breast cancer. Cancer Res 48:1343–1347, 1988.

    PubMed  CAS  Google Scholar 

  332. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N: Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50:48–53, 1990.

    PubMed  CAS  Google Scholar 

  333. Papa V, Pezzino V, Constantino A, Belfiore A, Giuffrida D, Frittatta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R: Elevated insulin receptor content in human breast cancer. J Clin Invest 86:1503–1510, 1990.

    Article  PubMed  CAS  Google Scholar 

  334. Fradkin JE, Eastman RC, Lesniak MA, Roth J: Specificity spillover at the hormone receptor—exploring its role in human disease. N Engl J Med 320:640–645, 1989.

    Article  PubMed  CAS  Google Scholar 

  335. Flier JS, Usher P, Moses AC: Monoclonal antibody to the type I insulin-like growth factor (IGF-I) blocks receptor-mediated DNA synthesis: Clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts. Proc Natl Acad Sci USA 83:664–668, 1986.

    Article  PubMed  CAS  Google Scholar 

  336. Daly RJ, Harris WH, Wang DY, Darbre PD: Autocrine production of insulin-like growth factor II using an inducible expression system results in reduced estrogen sensitivity of MCF-7 human breast cancer cells. Cell Growth Differ 2:457–464, 1991.

    PubMed  CAS  Google Scholar 

  337. Bonneterre J, Peyrat JP, Beuscart R, Démaille A: Prognostic significance of insulin-like growth factor I receptors in human breast cancer. Cancer Res 50:6931–6935, 1990.

    PubMed  CAS  Google Scholar 

  338. Foekens JA, Portengen H, van Putten WLJ, Trapman AMAC, Reubi JC, Alexieva-Figusch J, Klijn JGM: Prognostic value of receptors for insulin-like growth factor I, somatostatin and epidermal growth factor in human breast cancer. Cancer Res 49:7002–7009, 1989.

    PubMed  CAS  Google Scholar 

  339. Giorgino F, Belfiore A, Milazzo G, Constantino A, Maddux B, Whittaker J, Goldfine ID, Vigneri R: Overexpression of insulin receptors in fibroblasts and ovary cells induces a ligand-mediated transformed phenotype. Mol Endocrinol 5:452–459, 1991.

    Article  PubMed  CAS  Google Scholar 

  340. Hennipman A, van Oirschot BA, Smits J, Rijksen G, Staal GEJ: Tyrosine kinase activity in breast cancer, benign breast disease and normal breast tissue. Cancer Res 49:516–521, 1989.

    PubMed  CAS  Google Scholar 

  341. Ghirlanda G, Uccioli L, Perri F, Altamonte L, Bertoli A, Manna R, Fiati L, Greco AV: Epidermal growth factor, somatostatin and psoriasis. Lancet 1:65, 1983.

    Article  PubMed  CAS  Google Scholar 

  342. Setyono-Han B, Henkelman MS, Foekens JA, Klijn JGM: Direct inhibitory effects of somatostatin (analogues) on the growth of human breast cancer cells. Cancer Res 47:1566–1570, 1987.

    PubMed  CAS  Google Scholar 

  343. Sluyser M: Steroid/thyroid receptor-like proteins with oncogenic potential: A review. Cancer Res 50:451–458, 1990.

    PubMed  CAS  Google Scholar 

  344. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240:889–895, 1988.

    Article  PubMed  CAS  Google Scholar 

  345. Damm K, Thompson CC, Evans RM: Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339:593–597, 1989.

    Article  PubMed  CAS  Google Scholar 

  346. Kakizuka A, Miller WH, Umesono K, Warrell RP Jr., Frankel SR, Murty VVVS, Dimitrovsky E, Evans RM: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor PML. Cell 66:336–374, 1991.

    Article  Google Scholar 

  347. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A: The PML-RARo fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66:675–684, 1991.

    Article  PubMed  Google Scholar 

  348. Warrell RP Jr., Frankel SR, Miller WH Jr., Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A, Gabrilove J, Gordon MS, Dimitrövsky E: Differentiation therapy with tretinoin (all (rani-retinoic acid). N Engl J Med 324:1385–1393, 1991.

    Article  PubMed  Google Scholar 

  349. Graham ML, Krett NL, Miller LA, Leslie KK, Gordon DF, Wood WM, Wei LL, Horwits KB. T47DCO cells, genetically unstable and containing estrogen receptor mutants, are a model for the progression of breast cancers to hormone resistance. Cancer Res 50:6208–6217, 1990.

    PubMed  CAS  Google Scholar 

  350. Lees JA, Fawell SE, Parker MG: Identification of constitutive and steroid dependent frww-activation domains in the mouse estrogen receptor. J Steroid Biochem 34:33–39, 1989.

    Article  PubMed  CAS  Google Scholar 

  351. Moncharmont B, Ramp G, DeGoeij CCJ, Sluyser M: Comparison of estrogen receptors in hormone-independent and hormone-dependent Grander strain mouse mammary tumors. Cancer Res 51:3843–3848, 1991.

    PubMed  CAS  Google Scholar 

  352. Fuqua SAW, Fitzgerald SD, Chamness GC, Tandon AK, McDonnell DP, Nawaz Z, O’Malley BW, McGuire WL: Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res 51:105–109, 1991.

    PubMed  CAS  Google Scholar 

  353. Scott GK, Kushner P, Vigne J-L, Benz CC: Truncated forms of DNA-binding estrogen receptors in human breast cancer. J Clin Invest 88:700–706, 1991.

    Article  PubMed  CAS  Google Scholar 

  354. Fuqua SAW, Fitzgerald SD, Allred DC, Elledge RM, Nawaz Z, McDonnell DP, O’Malley BW, Greene GL, McGuire WL: Inhibition of estrogen receptor action by a naturally occurring variant in human breast tumors. Cancer Res 52:483–486, 1992.

    PubMed  CAS  Google Scholar 

  355. Schmitt M, Janicke F, Graeff H: Tumour-associated fibrinolysis: The prognostic relevance of plasminogen activators uPA and tPA in human breast cancer. Blood Coag Fibrin 1:695–702, 1990.

    CAS  Google Scholar 

  356. Liotta LA, Steeg PS, Sltler-Stevenson WG: Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  357. Bassett P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajeer OL, Chenard MP, Rio MC, Chambon P: A novel metalloprotease gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704, 1990.

    Article  Google Scholar 

  358. Steeg PS, Bevilaqua G, Kopper L, Thorgeirsson UP, Talmudge JE, Liotta LA, Sobel ME: Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204, 1988.

    Article  PubMed  CAS  Google Scholar 

  359. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IMK, King CR, Liotta LA, Steeg PS: Reduced nm23lawd protein in tumor métastases and aberrant Drosophila development. Nature 342:177–180, 1989.

    Article  PubMed  CAS  Google Scholar 

  360. Wallet V, Mutzel R, Troll H, Barzu O, Wurster B, Vernon M, Lacombe MA: Dictyostelium nucleoside diphosphate kinase highly homologous to nm23 and proteins involved in mammalian tumor métastases and Drosophila development. J Natl Cancer Inst 18:1199–1202, 1990.

    Article  Google Scholar 

  361. Leone A, Flatow U, King CR, Sandeen MA, Margulies IMK, Kiotta LA, Steeg PS: Reduced tumor incidence metastatic potential and cytokine responsiveness metastatic potential and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65:25–35, 1991.

    Article  PubMed  CAS  Google Scholar 

  362. Bevilacqua G, Sobel ME, Liotta LA, Steeg PS: Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. Cancer Res 49:5185–5190, 1989.

    PubMed  CAS  Google Scholar 

  363. Henessy C, Henry JA, May FEB, Westley BR, Angus B, Lennard TWJ: Expression of the antimetastatic gene nm23 in human breast cancer: An association with good prognosis. J Natl Cancer Inst 83:281–285, 1991.

    Article  Google Scholar 

  364. Stahl JA, Leone A, Rosengard AM, Porter L, King CR, Steeg PS: Identification of a second human nm23 gene, nm23-H2. Cancer Res 51:445–449, 1991.

    PubMed  CAS  Google Scholar 

  365. Lee SW, Tomasetto C, Sager R: Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA 88:2825–2829, 1991.

    Article  PubMed  CAS  Google Scholar 

  366. Chen L-C, O’Bryan J, Smith HS, Liu E: Isolation of a matrix gla protein in breast carcinoma cells by differential cDNA cloning. Oncogene 15:1391–1395, 1990.

    Google Scholar 

  367. Cropp CS, Lidereau R, Campbell G, Champene MH, Callahan R: Loss of heterozygosity on chromosomes 17 and 18 in breast carcinoma: Two additional regions identified. Proc Natl Acad Sci USA 87:7737–7741, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tripathy, D., Benz, C.C. (1993). Activated oncogenes and putative tumor suppressor genes involved in human breast cancers. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics