Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

The role of the p53 protein in the growth of both the normal and the transformed cell has been the focus of investigation since the discovery of p53 12 years ago. Although the function of this protein is not yet known, p53 appears to be a critical protein involved in the regulation of cell growth. Once classified as a dominant oncogene [13], it has recently become clear that only mutant forms of p53 can contribute to cellular transformation [46]. In contrast, overexpression of the wild-type p53 protein suppresses the formation of transformed cells [7,8] and, in addition, inhibits the growth of tumor cells [913]. These observations have resulted in the redefinition of the role of p53 to that of a recessive oncogene or a tumor suppressor gene [reviewed in 14,15]. Numerous studies conducted in the past few years have shown that alterations (deletions, rearrangements, missense mutations) in the p53 gene occur frequently (25–85% of the time) in quite a wide variety of human tumors [1640]. Thus, mutations at the p53 locus are, at present, the most common genetic change known to occur in human cancer. Do certain mutations appear to be selected for in human tumors? What are the known activities and phenotypes of the p53 protein in the normal cell, and what is the effect of mutation on the known p53 properties? What is the role, if any, of the overexpressed mutant p53 proteins in the tumor cell?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenkins JR, Rudge K, Currie GA: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V: Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312:649–651, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumor antigen in transformation of normal embryonic cells. Nature 312:646–649, 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ: Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539, 1988.

    PubMed  CAS  Google Scholar 

  5. Hinds P, Finlay C, Levine AJ: Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 63:739–746, 1989.

    PubMed  CAS  Google Scholar 

  6. Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, Shaulsky G, Skurnik Y, Arai N, Rotter V, Oren M: Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313–321, 1988.

    PubMed  CAS  Google Scholar 

  7. Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA 86:8763–8767, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Baker SJ, Markowitz S, Fearon ER, Willson JKU, Vogelstein B: Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M, Bressac B, Ozturk M, Baker SJ, Vogelstein B, Friend SH: p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10:5772–5781, 1990.

    PubMed  CAS  Google Scholar 

  11. Johnson P, Gray D, Mowat M, Benchimol S: Expression of wild-type p53 is not compatible with continued growth of p53-negative tumor cells. Mol Cell Biol 11:1–11, 1991.

    PubMed  CAS  Google Scholar 

  12. Mercer WE, Shields MT, Amin M, Sauve GJ, Appella E, Romano JW, Ullrich SJ: Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87:6166–6170, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Chen P-L, Chen Y, Bookstein R, Lee W-H: Genetic mechanisms of tumor suppression by the human p53 gene. Science 250:1576–1579, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Levine AJ, Momand J: Tumor suppressor genes: The p53 and retinoblastoma sensitivity genes and gene products. Biochim Biophys Acta 1032:119–136, 1990.

    PubMed  CAS  Google Scholar 

  15. Lane DP, Benchimol S: p53: Oncogene or anti-oncogene? Genes Devel 4:1–8, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Crook T, Wrede D, Tidy J, Scholefield J, Crawford L, Vousden KH: Status of c-myc, p53 and retinoblastoma genes in human papillomavirus positive and negative squamous cell carcinomas of the anus. Oncogene 6:1251–1257, 1991.

    PubMed  CAS  Google Scholar 

  17. Sidransky D, von Eschenbach A, Tsai YC, Jones P, Summerhayes I, Marshall F, Paul M, Green P, Hamilton SR, Frost P, Vogelstein B: Identification of p53 gene mutations in bladder cancers and urine samples. Science 252:706–708, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in p53 gene occur in diverse human tumour types. Nature 342:705–708, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Prosser J, Thompson AM, Cranston G, Evans HJ: Evidence that p53 behaves as a tumor suppressor gene in sporadic breast tumors. Oncogene 5:1573–1579, 1990.

    PubMed  CAS  Google Scholar 

  20. Davidoff AM, Humphrey PA, Iglehart JK, Marks JR: Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 88:5006–5010, 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Varley JM, Brammar WJ, Lane DP, Swallow JE, Dolan C, Walker RA: Loss of chromosome 17pl3 sequences and mutation of p53 in human breast carcinomas. Oncogene 6:413–421, 1991.

    PubMed  CAS  Google Scholar 

  22. Baker SJ, Preisinger AC, Jessup JM, Paraskeva C, Markowitz S, Willson JK, Hamilton S, Vogelstein B: p53 gene mutations occur in combination with 17p allelic deletions or late events in colorectal tumorigenesis. Cancer Res 50:7717–7722, 1990.

    PubMed  CAS  Google Scholar 

  23. Hollstein MC, Peri L, Mandard AM, Welsh JA, Montesano R, Metcalf RA, Bak M, Harris CC: Genetic analysis of human esophageal tumors from two high incidence geographic areas: Frequent p53 base subsitutions and absence of ras mutations. Cancer Res 51:4102–4106, 1991.

    PubMed  CAS  Google Scholar 

  24. Hollstein MC, Metcalf RA, Welsh JA, Montesano R, Harris CC: Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci USA 87:9958–9961, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Tamura G, Kihana T, Nomura K, Terada M, Sugimura T, Hirohashi S: Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-strand conformation polymorphism analysis. Cancer Res 51:3056–3058, 1991.

    PubMed  CAS  Google Scholar 

  26. Malkin D, Li FP, Strong LC, Fraumeni JF, Jr., Nelson CE, Kim D, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Bressac B, Kew M, Wands J, Ozturk M: Selective G to T mutations of p53 gene in hepatocellular carcinoma from Southern Africa. Nature 350:429–431, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC: Mutational hotspot in the p53 gene in human hepatocellular carcinoma. Nature 350:427–428, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Chiba I, Takahashi T, Nau MM, D’Amico D, Curiel DT, Mitsudomi T, Buchhagen DL, Carbone D, Piantadosi S, Koga H, Reissman PT, Slamon DJ, Holmes EC, Minna, JD: Mutations in the p53 gene are frequent in primary resected non-small cell lung cancer. Oncogene 5:1603–1610, 1990.

    PubMed  CAS  Google Scholar 

  30. Iggo R, Gatter K, Bartek J, Lane D, Harris AL: Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335:675–679, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Hensel CH, Xiang RH, Sakaguchi AY, Naylor AL: Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6:1067–1071, 1991.

    PubMed  CAS  Google Scholar 

  32. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R: p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 88:5413–5417, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Ahuja H, Bar-Eli M, Advani SH, Benchimol S, Cline MJ: Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci USA 86:6783–6787, 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Menon AC, Anderson KM, Riccardi VM, Chung RY, Whaley JM, Yandell DW, Farmer GE, Freiman RN, Lee JK, Li FP, Barker DF, Ledbetter DH, Kleider A, Martuza RL, Gusella JF, Seizinger BR: Chromosome 17p deletions and p53 gene mutations associated with the formation of malignant neurofibrosarcomas in von Recklinghausen neurofibromatosis. Proc Natl Acad Sci USA 87:5435–5439, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Miller CW, Aslo A, Tsay C, Slamon D, Ishizaki K, Toguchida K, Yamamuro T, Lampkin B, Koeffler HP: Frequency and structure of p53 rearrangements in human osteosarcoma. Cancer Res 50:7950–7954, 1990.

    PubMed  CAS  Google Scholar 

  36. Mulligan LM, Matlashewski GJ, Scrable HJ, Cavenee WK: Mechanisms of p53 loss in human sarcoma. Proc Natl Acad Sci USA 87:5863–5867, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Marks JR, Davidoff AM, Kerns BJ, Humphrey PA, Pence JC, Dodge RK, Clarke-Pearson DL, Iglehart JD, Bast RC, Jr., Berchuck A: Overexpression and mutation of p53 in epithelial ovarian cancer. Caner Res 51:2979–2984, 1991.

    CAS  Google Scholar 

  38. Isaacs WB, Carter BS, Ewing CM: Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res 51:4716–4720, 1991.

    PubMed  CAS  Google Scholar 

  39. Stratton MR, Moss S, Warren W, Patterson J, Clark J, Fisher C, Fletcher CD, Ball A, Thomas M, Gusterson BA, Cooper CS: Mutation of the p53 gene in human soft tissue sarcomas: Association with abnormalities of the RB1 gene. Oncogene 5:1297–1301, 1990.

    PubMed  CAS  Google Scholar 

  40. Metzger AK, Sheffield VC, Duyk G, Daneshvar L, Edwards MS, Cogen PH: Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymona. Proc Natl Acad Sci USA 88:7825–7829, 1991.

    Article  PubMed  CAS  Google Scholar 

  41. Dippold WG, Jay G, DeLeo AB, Khoury G, Old LJ: p53 transformation-related protein: Detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci USA 78:1695–1699, 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Benchimol S, Pirn D, Crawford L: Radioimmunoassay of the cellular protein p53 in mouse and human cell lines. EMBO J 1:1055–1062, 1982.

    PubMed  CAS  Google Scholar 

  43. Thomas R, Kaplan L, Reich N, Lane DP, Levine AJ: Characterization of human p53 antigen employing primate specific monoclonal antibodies. Virology 131:502–517, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Rogel A, Popliker M, Webb CG, Oren M: p53 cellular tumor antigen: Analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5:2851–2855, 1985.

    PubMed  CAS  Google Scholar 

  45. Oren M, Maltzman W, Levine AJ: Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1:101–110, 1981.

    PubMed  CAS  Google Scholar 

  46. Reich NC, Oren M, Levine AJ: Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol Cell Biol 3:2143–2150, 1983.

    PubMed  CAS  Google Scholar 

  47. Lane DP, Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263, 1979.

    Article  PubMed  CAS  Google Scholar 

  48. Linzer DIH, Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen in SV40 transformed cells. Cell 17:43–52, 1979.

    Article  PubMed  CAS  Google Scholar 

  49. Sarnow P, Ho YS, William J, Levine AJ: Adenovirus ElB-58Kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54Kd cellular protein in transformed cells. Cell 28:387–394, 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Mercer WE, Nelson D, DeLeo AB, Old LJ, Baserga R: Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc Natl Acad Sci USA 79:6309–6312, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Mercer WE, Avignolo C, Baserga R: Role of the p53 protein in cell proliferation as studied by microinjection of monoconal antibodies. Mol Cell Biol 4:276–281, 1984.

    PubMed  CAS  Google Scholar 

  52. Crawford LV, Pirn DC, Gurney EG, Goodfellow P, Taylor-Papadimitriou J: Detection of a common feature in several human tumor cell lines — a 53,000-dalton protein. Proc Natl Acad Sci USA 78:41–45, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Rotter V, Boss MA, Baltimore D: Increased concentration of an apparently identical cellular protein in cells transformed by either Abelson murine leukemia virus or other transforming agents. J Virol 38:336–346, 1981.

    PubMed  CAS  Google Scholar 

  54. Rovinski B, Benchimol S: Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2:445–452, 1988.

    PubMed  CAS  Google Scholar 

  55. Levine AJ, Finlay CA, Hinds PW: The p53 proto-oncogene and its product. In: Villarreal LP (ed): Common Mechanisms of Transformation by Small DNA Tumor Viruses. ASM Publications, Washington DC, 1989, pp 21–37.

    Google Scholar 

  56. Michalovitz D, Eliyahu D, Oren M: Overproduction of protein p53 contributes to simian virus 40-mediated transformation. Mol. Cell. Biol 6:3531–3536, 1986.

    PubMed  CAS  Google Scholar 

  57. Eliyahu D, Michalovitz D, Oren M: Overproduction of p53 antigen makes established cells highly tumorigenic. Nature 316:158–160, 1985.

    Article  PubMed  CAS  Google Scholar 

  58. Pohl J, Goldfinger N, Radler-Pohl A, Rotter V, Schirrmacher V: p53 increases experimental metastatic capacity of murine carcinoma cells. Mol Cell Biol 8:2078–2081, 1988.

    PubMed  CAS  Google Scholar 

  59. Wolf D, Harris N, Rotter V: Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38:119–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  60. Shaulsky G, Goldfinger N, Ben-Ze’ev A, Rotter V: Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol 10:6565–6577, 1990.

    PubMed  CAS  Google Scholar 

  61. Hinds PW, Finlay CA, Frey AB, Levine AJ: Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol Cell Biol 7:2863–2869, 1987.

    PubMed  CAS  Google Scholar 

  62. Herskowitz I: Functional inactivation of genes by dominant negative mutations. Nature 329:219–222, 1987.

    Article  PubMed  CAS  Google Scholar 

  63. Werness BA, Levine AJ, Howley PM: Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM: The E6 oncoprotein encoded by human papillomavirus 16 or 18 promotes the degradation of 53. Cell 63:1129–1136, 1990.

    Article  PubMed  CAS  Google Scholar 

  65. DeCaprio JA, Ludlow JW, Figge J, Shew J-Y, Huang C-M, Lee W-H, Marsilio E, Paucha E, Livingston DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283, 1988.

    Article  PubMed  CAS  Google Scholar 

  66. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene; the adenovirus Ela proteins bind to the retinoblastoma gene product. Nature 334:124–129, 1988.

    Article  PubMed  CAS  Google Scholar 

  67. Dyson N, Howley PM, Munger K, Harlow E: The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937, 1989.

    Article  PubMed  CAS  Google Scholar 

  68. Mowat M, Cheng A, Kimura N, Bernstein A, Benchimol, S: Rearrangements of the cellular p53 gene in erythroleukaemia cells transformed by Friend virus. Nature 314:633–636, 1985.

    Article  PubMed  CAS  Google Scholar 

  69. Chow V, Ben-David Y, Bernstein A, Benchimol S, Mowat M: Multistage Friend erythroleukemia: Independent origin of tumor clones with normal or rearranged p53 cellular oncogenes. J Virol 61:2777–2781, 1987.

    PubMed  CAS  Google Scholar 

  70. Rovinski B, Munroe D, Peacock J, Mowat M, Bernstein A, Benchimol S: Deletion of 5′-coding sequences of the cellular p53 gene in mouse erythroleukemia: A novel mechanism of oncogene regulation. Mol Cell Biol 7:847–853, 1987.

    PubMed  CAS  Google Scholar 

  71. Ben-David Y, Prideaux VR, Chow V, Benchimol S, Bernstein A: Inactivation of the p53 oncogene by internal deletions and/or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 3:179–185, 1988.

    PubMed  CAS  Google Scholar 

  72. Munroe DG, Rovinski B, Bernstein A, Benchimol S: Loss of a highly conserved domain on p53 as a result of gene deletion during Friend-virus-induced erythroleukemia. Oncogene 2:621–624, 1988.

    PubMed  CAS  Google Scholar 

  73. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, White R, Vogelstein B: Chromosome 17 deletions and p53 gene mutations in colorectal carcinoma. Science 244:217–221, 1989.

    Article  PubMed  CAS  Google Scholar 

  74. Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B, Levine AJ: Mutant p53 cDNAs from human colorectal carcinomas can cooperate with ras in transformation of primary rat cells. Cell Growth Differ 1:571–580, 1990.

    PubMed  CAS  Google Scholar 

  75. Michalovitz D, Halevy O, Oren M: Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680, 1990.

    Article  PubMed  CAS  Google Scholar 

  76. Yewdell J, Gannon JV, Lane DP: Monoclonal antibody analysis of p53 expression in normal and transformed cells. J Virol 59:444–452, 1986.

    PubMed  CAS  Google Scholar 

  77. Gannon JV, Greaves R, Iggo R, Lane DP: Activating mutations in p53 produce a common conformational effect: A monoclonal antibody specific for the mutant form. EMBOJ 9:1595–1602, 1990.

    CAS  Google Scholar 

  78. Martinez J, Georgoff I, Martinez J, Levine AJ: Cellular localization and cell cycle regulation by a temperature sensitive p53 protein. Genes Dev 5:151–159, 1991.

    Article  PubMed  CAS  Google Scholar 

  79. Gannon JV, Lane DP: Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature 349:802–806, 1991.

    Article  PubMed  CAS  Google Scholar 

  80. Ginsberg D, Michael-Michalovitz D, Ginsberg D, Oren M: Induction of growth arrest by a temperature-sensitive p53 mutant is correlated with increased nuclear localization and decreased stability of the protein. Mol Cell Biol 11:582–585, 1991.

    PubMed  CAS  Google Scholar 

  81. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347, 1991.

    Article  PubMed  CAS  Google Scholar 

  82. Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ: Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 84:7716–7719, 1987.

    Article  PubMed  CAS  Google Scholar 

  83. Benchimol S, Lamb P, Crawford LV, Sheer D, Shours TB, Bruns GAP, Peacock J: Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat Cell Mol Genet 11:505–509, 1985.

    Article  PubMed  CAS  Google Scholar 

  84. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM: Localization of gene for human p53 tumor antigen to band 17pl3. Nature 320:84–85, 1986.

    Article  PubMed  CAS  Google Scholar 

  85. McBride OW, Merry D, Givol D: The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17pl3). Proc Natl Acad Sci USA 83:130–134, 1986.

    Article  PubMed  CAS  Google Scholar 

  86. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD: p53: A frequent target for genetic abnormalities in lung cancer. Science 246:491–494, 1989.

    Article  PubMed  CAS  Google Scholar 

  87. Hollstein M, Sidransky D, Vogelstein B, Harris CC: p53 mutations in human cancers. Science 253:49–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  88. Lavigueur A, Maltby V, Mock D, Rossant J, Pawson T, Bernstein A: High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991, 1989.

    PubMed  CAS  Google Scholar 

  89. Li FP: Cancer families: Human models of susceptibility to neoplasia — The Richard & Hinda Rosenthal Foundation Award Lecture. Cancer Res 48:5381–5386, 1988.

    PubMed  CAS  Google Scholar 

  90. Li FP, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, Miller RM: A cancer family syndrome in twenty-four kindreds. Cancer Res 48:5358–5362, 1988.

    PubMed  CAS  Google Scholar 

  91. Srivastava S, Zou Z, Pirollo K, Blattner W, Chang EH: Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348:747–749, 1990.

    Article  PubMed  CAS  Google Scholar 

  92. Shaulsky G, Goldfinger N, Rotter V: Alterations in tumor development in vivo mediated by expression of wild-type or mutant p53 proteins. Cancer Res 51:5232–5237, 1991.

    PubMed  CAS  Google Scholar 

  93. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091, 1991.

    Article  PubMed  CAS  Google Scholar 

  94. Tan T-H, Wallis J, Levine AJ: Identification of the p53 protein domain involved in formation of the simian virus 40 large T antigen-p53 protein complex. J Virol 59:574–583, 1986.

    PubMed  CAS  Google Scholar 

  95. Raycroft L, Schmidt JR, Yoas K, Lozano G: p53 growth suppression correlates with transcriptional activation. Mol Cell Biol, in press, 1991.

    Google Scholar 

  96. Fields S, Jang SK: Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049, 1990.

    Article  PubMed  CAS  Google Scholar 

  97. Milner J, Medcalf EA: Cotranslation of activated mutant p53 with wild-type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774, 1991.

    Article  PubMed  CAS  Google Scholar 

  98. Halevy O, Michalovitz D, Oren M: Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250:113–116, 1990.

    Article  PubMed  CAS  Google Scholar 

  99. Deppert W, Buschhausen-Denker G, Patschinsky T, Steinmeyer K: Cell cycle control of p53 in normal (3T3) and chemically transformed (MethA) mouse cells. II. Requirement for cell cycle progression. Oncogene 5:1701–1706, 1990.

    PubMed  CAS  Google Scholar 

  100. Shohat O, Greenberg M, Reisman D, Oren M, Rotter V: Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1:277–283, 1987.

    PubMed  CAS  Google Scholar 

  101. Soussi T, Caron de Fromental C, May P: Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952, 1990.

    PubMed  CAS  Google Scholar 

  102. Addison C, Jenkins JR, Sturzbecher HW: The p53 nuclear localisation signal is structurally linked to a p34cdc2kinase motif. Oncogene 5:423–426, 1990.

    PubMed  CAS  Google Scholar 

  103. Dang CV, Lee WMF: Nuclear and nucleolar targeting sequences of c-erb, c-myc, N-myc, p53, HSP70 and HIV tat proteins. J Biol Chem 264:18019–18023, 1989.

    PubMed  CAS  Google Scholar 

  104. Milner J, Medcalf EA, Cook AC: Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol Cell Biol 11:12–19, 1991.

    PubMed  CAS  Google Scholar 

  105. Lane DP, Gannon J: Cellular proteins involved in SV40 transformation. Cell Biol Int Rep 7:513–514, 1983.

    Article  CAS  Google Scholar 

  106. Steinmeyer K, Deppert W: DNA binding properties of murine p53. Oncogene 3:501–507, 1988.

    PubMed  CAS  Google Scholar 

  107. Kern SE, Kinzler KW, Baker SJ, Nigro JM, Rotter V, Levine AJ, Friedman P, Prives C, Vogelstein B: Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 6:131–136, 1991.

    PubMed  CAS  Google Scholar 

  108. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B: Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711, 1991.

    Google Scholar 

  109. Raycroft L, Wu H, Lozano G: Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051, 1990.

    Article  PubMed  CAS  Google Scholar 

  110. O’Rourke RW, Miller CW, Kato GJ, Simon KJ, Chen D-L, Dang CV, Koeffler HP: A potential transcriptional activation element in the p53 protein. Oncogene 5:1829–1832, 1990.

    CAS  Google Scholar 

  111. Weintraub H, Hauschka S, Tapscott SJ: The MCK enhancer contains a p53 responsive element. Proc Natl Acad Sci USA 88:4570–4571, 1991.

    Article  PubMed  CAS  Google Scholar 

  112. Santhanam U, Ray A, Sehgal PB: Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA 88:7605–7609, 1991.

    Article  PubMed  CAS  Google Scholar 

  113. Gannon JV, Lane DP: p53 and DNA polymerase a compete for binding to SV40 T antigen. Nature 329:456–458, 1987.

    Article  PubMed  CAS  Google Scholar 

  114. Braithwaite AW, Sturzbecher H-W, Addison C, Palmer C, Rudge K, Jenkins JR: Mouse p53 inhibits SV40 origin-dependent DNA replication. Nature 329:458–460, 1987.

    Article  PubMed  CAS  Google Scholar 

  115. Sturzbecher HW, Brain R, Maimets T, Addison C, Ridge K, Jenkins JR: Mouse p53 blocks SV40 DNA replication in vitro and downregulates T antigen DNA helicase activity. Oncogene 3:405–413, 1988.

    PubMed  CAS  Google Scholar 

  116. Wang EH, Friedman PN, Prives C: The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T-antigen. Cell 57:379–392, 1989.

    Article  PubMed  CAS  Google Scholar 

  117. Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type, but not mutant, human p53 proteins inhibit the replication activities of simian virus 40 large tumor antigen. Proc Natl Acad Sci USA 87:9275–9279, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finlay, C.A. (1993). Normal and malignant growth control by p53. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics