Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

The name transforming growth factor-ß (TGF-ß) has come to represent a family of highly homologous polypeptides with a wide range of biological activities. The first member of this gene family was identified nearly a decade ago as one of two essential factors, called TGF-α and TGF-ß present in the conditioned medium of a murine sarcoma virus-transformed cell line, which together stimulated the anchorage-independent growth of non-transformed fibroblast cell lines [1]. Several members of the TGF-ß family have since been identified, of which TGF-ßl, ß2, and ß3 are produced by mammalian cells. These three forms of TGF-ß have similar biological activities in the majority of assay systems, though differences in relative potency are sometimes evident. For simplicity, we will use the name TGF-ß to refer to the TGF-ß family as a whole, unless otherwise specified. It should, however, be pointed out that most studies have evaluated only the biological activities of TGF-ßl. Finally, a number of proteins have been identified that exhibit structural similarities to TGF-ß, though with a more distant relationship than the individual TGF-ß isoforms. Together with TGF-ß, they constitute the TGF-ß superfamily. As yet little is known about the effects of these factors on cell proliferation, and they will not be discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE: Sarcoma growth factor from conditioned medium is composed of both type alpha and type beta transforming growth factors. Proc Natl Acad Sci USA 80:6264–6268, 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Roberts AB, Sporn MB: The transforming growth factor-ßs. In: Peptide Growth Factors and their Receptors. Handbook of Experimental Pharmacology. Sporn MB, Roberts AB (ed): Springer Verlag, Heidelberg, pp 419–472, 1990.

    Google Scholar 

  3. Lyons RM, Moses HL: Transforming growth factors and the regulation of cell proliferation. Eur J Biochem 187:467–473, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Barnard JA, Lyons RM, Moses HL: The cell biology of transforming growth factor ß. Biochim Biophys Acta Rev Cancer 1032:79–87, 1990.

    Article  CAS  Google Scholar 

  5. Centrella M, McCarthy TL, Canalis E: Transforming growth factor ß is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 262:2869–2874, 1987.

    PubMed  CAS  Google Scholar 

  6. Ridley AJ, Davis JB, Stroobant P, Land H: Transforming growth factors-ßl and ß2 are mitogens for rat Schwann cells. J Cell Biol 109:3419–3424, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Assoian RK, Frolik CA, Roberts AB, Miller DM, Sporn MB: Transforming growth factor beta controls receptor levels for epidermal growth factor in NRK fibroblasts. Cell 36:35–41, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Shipley GD, Tucker RF, Moses HL: Type ß transforming growth factor/growth inhibitor stimulates entry of monolayer cultures of AKR-2B cells into S phase after a prolonged prereplicative interval. Proc Natl Acad Sci USA 82:4147–4151, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Leof EB, Proper JA, Goustin AS, Shipley GD, DiCorleto PE, Moses HL: Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor ß: A proposed model for indirect mitogenesis involving autocrine activity. Proc Natl Acad Sci USA 83:2453–2457, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Soma Y, Grotendorst GR: TGF-ß stimulates primary human skin fibroblast DNA synthesis via an autocrine production of PDGF-related peptides. J Cell Physiol 140:246–253, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Keating MT, Williams LT: Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science 239:914–916, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Heldin C-H, Westermark B, Wasteson Å: Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc Natl Acad Sci USA 78:3664–3668, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R: TGF-ß induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63:515–524, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS: Transforming growth factor beta: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Yang EY, Moses HL: Transforming growth factor ßl-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Bio 111:731–741, 1990.

    Article  CAS  Google Scholar 

  16. Moses HL, Yang EY, Pietenpol JA: TGF-ß stimulation and inhibition of cell proliferation: New mechanistic insights. Cell 63:245–247, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Chambard J-C, Pouysségur J: TGF-ß inhibits growth factor-induced DNA synthesis in hamster fibroblasts without affecting the early mitogenic events. J Cell Physiol 135:101–107, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Like B, Massagué J: The antiproliferative effect of type beta transforming growth factor occurs at a level distal from receptors for growth-activating factors. J Biol Chem 261:13426–13429, 1986.

    PubMed  CAS  Google Scholar 

  19. Boyd FT, Massaguè J: Transforming growth factor-ß inhibition of epithelial cell proliferation linked to the expressive of a 53-kDa membrane receptor. J Biol Chem 264:2272–2278, 1989.

    PubMed  CAS  Google Scholar 

  20. Howe PH, Cunningham MR, Leof EB: Inhibition of mink lung epithelial cell proliferation by transforming growth factor-ß is coupled through a pertussis-toxin-sensitive substrate. Biochem J 266:537–543, 1990.

    PubMed  CAS  Google Scholar 

  21. Laiho M, DeCaprio JA, Ludlow JW, Livingston DM, Massagué J: Growth inhibition by TGF-ß linked to suppression of retinoblastoma protein phosphorylation. Cell 62:175–185, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Howe PH, Draetta G, Leof EB: Transforming growth factor ßl inhibition of p34cdc2 phosphorylation and histone HI kinase activity is associated with Gl/S phase growth arrest. Mol Cell Biol 11:1185–1194, 1991.

    PubMed  CAS  Google Scholar 

  23. Pietenpol JA, Holt JT, Stein RW, Moses HL: Transforming growth factor ßl suppression of c-myc gene transcription: Role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci USA 87:3758–3762, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Miinger K, Howley PM, Moses HL: TGF-ßl inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Mulder KM, Humphrey LE, Gene Choi H, Childress-Fields KE, Brattain MG: Evidence for c-myc in the signaling pathway for TGF-ß in well-differentiated human colon carcinoma cells. J Cell Physiol 145:501–507, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Coffey RJ, Jr., Bascom CC, Sipes NJ, Graves-Deal R, Weissman BE, Moses HL: Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor ß. Mol Cell Biol 8:3088–3093, 1988.

    PubMed  CAS  Google Scholar 

  27. Pietenpol JA, MÜnger K, Howley PM, Stein RW, Moses HL: Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor ßl and the retinoblastoma gene product. Proc Natl Acad Sci USA 88:10227–10231, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Kerr LD, Miller DB, Matrisian LM: TGF-ßl inhibition of transin/stromelysin gene expression is mediated through a fos binding sequence. Cell 61:267–278, 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Weinberg RA: Tumor suppressor genes. Science 254:1138–1146, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang CM, Livingston DM: The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085, 1989.

    Google Scholar 

  31. Laiho M, Rönnstrand L, Heino J, DeCaprio JA, Ludlow JW, Livingston DM, Massagué J: Control of junB and extracellular matrix protein expression by transforming growth factor-ßl is independent of simian virus 40 T antigen-sensitive growth-inhibitory events. Mol Cell Biol 11:972–978, 1991.

    PubMed  CAS  Google Scholar 

  32. Zentella A, Weis FMB, Ralph DA, Laiho M, Massagué J: Early gene responses to transforming growth factor-ß in cells lacking growth-suppressive RB function. Mol Cell Biol 11:4952–4958, 1991.

    PubMed  CAS  Google Scholar 

  33. Missero C, Filvaroff E, Dotto GP: Induction of transforming growth factor ß, resistance by the El A oncogene requires binding to a specific set of cellular proteins. Proc Natl Acad Sci USA 88:3489–3493, 1991.

    Article  PubMed  CAS  Google Scholar 

  34. Ong G, Sikora K, Gullick WJ: Inactivation of the retinoblastoma gene does not lead to loss of TGF-ß receptors or response to TGF-ß in breast cancer cell lines. Oncogene 6:761–763, 1991.

    PubMed  CAS  Google Scholar 

  35. Spillare E, Gerwin BI, Lehman TA, Forrester K, Kispert J, Pfeifer AMA, Baker SJ, Vogelstein B, Harris CC: Transforming growth factor ß1 (TGF-ß1) responsiveness and growth of human bronchial epithelial cells are affected by overexpression of exogenous wild type and mutant p53. Proc Am Assoc Cancer Res 32:308, 1991.

    Google Scholar 

  36. Gruppuso PA, Mikumo R, Brautigan DL, Braun L: Growth arrest induced by transforming growth factor ßl is accompanied by protein phosphatase activation in human keratinocytes. J Biol Chem 266:3444–3448, 1991.

    PubMed  CAS  Google Scholar 

  37. Kim S-J, Lee H-D, Robbins PD, Busam K, Sporn MB, Roberts AB: Regulation of transforming growth factor ßl gene expression by the product of the retinoblastoma-susceptibility gene. Proc Natl Acad Sci USA 88:3052–3056, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Takehara K, LeRoy EC, Grotendorst GR: TGF-ß inhibition of endothelial cell proliferation: Alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Mioh H, Chen JK: Differential inhibitory effects of TGF-ß on EGF-, PDGF-, and HBGF-1-stimulated MG63 human osteosarcoma cell growth: Possible involvement of growth facter interactions at the receptor and postreceptor levels. J Cell Physiol 139:509–516, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Dubois CM, Ruscetti FW, Palaszynski EW, Falk LA, Oppenheim JJ, Keller JR: Transforming growth factor ß is a potent inhibitor of interleukin 1 (IL-1) receptor expression: Proposed mechanism of inhibition of IL-1 action. J Exp Med 172:737–744, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Nugent MA, Newman MJ: Inhibition of normal rat kidney cell growth by transforming growth factor-ß is mediated by collagen. J Biol Chem 264:18060–18067, 1989.

    PubMed  CAS  Google Scholar 

  42. Newman MJ: Inhibition of carcinoma and melanoma cell growth by type 1 transforming growth factor ß is dependent on the presence of polyunsaturated fatty acids. Proc Natl Acad Sci USA 87:5543–5547, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Das SK, Fanburg BL: TGF-ß1 produces a’ prooxidant’ effect on bovine pulmonary artery endothelial cells in culture. Am J Physiol Lung Cell Mol Physiol 261:L249–L254, 1991.

    CAS  Google Scholar 

  44. Shibanuma M, Kuroki T, Nose K: Release of H2O2 and phosphorylation of 30 kilodalton proteins as early responses of cell cycle-dependent inhibition of DNA synthesis by transforming growth factor ßl. Cell Growth Differ 2:583–591, 1991.

    PubMed  CAS  Google Scholar 

  45. Russell WE, Coffey RJ, Jr., Ouellette AJ, Moses HL: Type ß transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc Natl Acad Sci USA 85:5126–5130, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Silberstein GB, Daniel CW: Reversible inhibition of mammary gland growth by transforming growth factor-ß. Science 237:291–293, 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Twardzik DR, Ranchalis JE, McPherson JM, Ogawa Y, Gentry L, Purchio A, Plata E, Todaro GJ: Inhibition and promotion of differentiated-like phenotype of a human lung carcinoma in athymic mice by natural and recombinant forms of transforming growth factor-ß. Natl Cancer Inst 81:1182–1185, 1989.

    Article  CAS  Google Scholar 

  48. Manning AM, Williams AC, Game SM, Paraskeva C: Differential sensitivity of human colonie adenoma and carcinoma cells to transforming growth factor ß (TGF-ß): Conversion of an adenoma cell line to a tumorigenic phenotype is accompanied by a reduced response to the inhibitory effects of TGF-ß. Oncogene 6:1471–1476, 1991.

    PubMed  CAS  Google Scholar 

  49. Schwarz LC, Gingras M-C, Goldberg G, Greenberg AH, Wright JA: Loss of growth factor dependence and conversion of transforming growth factor-ß1 inhibition to stimulation in metastatic H-ras-transformed murine fibroblasts. Cancer Res 48:6999–7003, 1988.

    PubMed  CAS  Google Scholar 

  50. Leone A, Flatow U, King CR, Sandeen MA, Margulies IMK, Liotta LA, Steeg PS: Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65:25–35, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Theodorescu D, Caltabiano M, Greig R, Rieman D, Kerbel RS: Reduction of TGF-beta activity abrogates growth promoting tumor cell-cell interactions in vivo. J Cell Physiol 148:380–390, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arrick, B.A., Derynck, R. (1993). Growth regulation by transforming growth factor-β. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics