Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

Cancer-associated genes generally can be divided into ‘dominant’ acting protooncogenes/oncogenes and ‘recessive’ tumor suppressor genes. Most simply defined, protooncogenes are identified by a gain of function as mutational damage occurs, whereas tumor suppressor genes contribute to cancer by a loss of function. However, the pace of science leads us to believe that these categories are arbitrary and, perhaps, functionally incorrect as the oncogenes are found to interact with tumor suppressor genes. Nevertheless, because the details of the interaction are, to date, still unclear, the current nosology of oncogenes and tumor suppressor genes will be used for the sake of convenience. The ever increasing numbers of protooncogenes and tumor suppressor genes discovered and their complex interactions suggest that the challenge for cancer researchers lies in deciphering the intricate genetic mosaic that characterizes cancer. This chapter will serve as an overview for both types of cancer-associated genes and will include specific examples that highlight important concepts in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith MR, DeGudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543, 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–606, 1983.

    Article  PubMed  CAS  Google Scholar 

  3. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltloff S: Oncogenes and signal transduction. Cell 64:281–302, 1991.

    Article  PubMed  CAS  Google Scholar 

  4. Kaplan DR, Morrison DK, Wong G, McCormick F, Williams LT: PDGF b-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61:125–133, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Kazlauskas A, Ellis C, Pawson T, Cooper JA: Binding of GAP to activated PDGF receptors. Science 247:1578–1581, 1990.

    Article  PubMed  CAS  Google Scholar 

  6. McCormick F: ras GTPase activating protein: Signal transmitter and signal terminator. Cell 56:5–8, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Yatani A, Okabe K, Polakis P, Halenbeck R, McCormick F, Brown AM: ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61:769–776, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Morrison DK, Kaplan DR, Escobedo JA, Rapp U, Roberts TM, Williams LT: Direct activation of the serine/threonine kinase activity of raf-1 through tyrosine phosphorylation by the PDGF-ß receptor. Cell 58:649–657, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Jamal S, Ziff E: Transactivation of c-fos and beta-actin genes by raf as a step in early response to transmembrane signals. Nature 344:463–466, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Kolch W, Heidecker G, Lloyd P, Rapp UR: Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature 349:426–428, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Xu Gangfeng, Lin Boris, Tanaka B, Dundd Dane, Wood D, Gesteland R, White R, Weiss R, Tamano F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Martin GA, Viskochil D, Bollag GA, McCabe PC, Crosier WJ, Haubruck H, Controy L, Clark R, O’Connell P, Cawthon RM, Innis MA, McCormick F: The Gap related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. De Braekeleer M, Lin CC: The occurrence of the 15;17 translocation in acute pro-myelocytic leukemia. Cancer Genet Cytogenet 19:311–319, 1986.

    Article  PubMed  Google Scholar 

  14. H de The, Chomienne C, Lanotte M, Degos L, Dejean A: The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor a gene to a novel transcribed locus. Nature 347:558–561, 1990.

    Article  Google Scholar 

  15. Borrow J, Goddard AD, Sheer D, Solomon E: Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Goddard AD, Borrow J, Freemont PS, Solomon E: Characterization of a zinc finger gene disrupted by the t(15;17) in acute promyelocytic leukemia. Science 254:1371–1374, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VVVA, Dmitrovsky E, Evans RM: Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARA with a novel putative transcription factor, PML. Cell 66:663–674, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L: All trans-retinoic acid as a differentiation therapy for acute promyelocytic leukemia: I. Clinical results. Blood 76:1704–1709, 1990.

    PubMed  CAS  Google Scholar 

  19. Huang ME, Yu-Chen Y, Shu-rong C, Jin-Ren C, Jia-Xiang L, Long-Jun G, Zhen-Yi W: Use of all trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572, 1988.

    PubMed  CAS  Google Scholar 

  20. Zenke M, Munoz A, Sap J, Vennstrom B, Beug H: v-erbA oncogene activation entails the loss of hormone dependent regulator activity of c-erbA. Cell 61:1035–1049, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Garnier JM, Mader S, Chambon P: Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68:377–395, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Kamps MP, Murre C, Sun X, Baltimore D: A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in pre-B ALL. Cell 60:547–555, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Haluska FG, Finver S, Tsujimoto Y. Croce CM: The t(14;18) chromosomal translocations onvolved in B cell neoplasms result from mistakes in VDJ joining. Nature 324:158–161, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Seto M, Jaeger U, Hockett RD, Graninger W, Bennett S, Goldman P, Korsmeyer SJ: Alternative promoters and exons, somatic mutation and deregulation of the bcl-2-Ig fusion gene in lymphoma. EMBO J 7:123–131, 1988.

    PubMed  CAS  Google Scholar 

  25. McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKeam JP, Korsmeyer SJ: bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57:79–88, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Hockenberry D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ: bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336, 1990.

    Article  Google Scholar 

  27. Nunez G, London L, Hockenberry D, Alexander M, McKearn JP, Korsmeyer SJ: Deregulated bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J Immunol 144:3602–3610, 1990.

    PubMed  CAS  Google Scholar 

  28. Liu YJ, Joshua DE, Williams GT, Smith CA, Gordon J, MacLennan ICM: Mechanism of antigen-driven selection in germinal centres. Nature 342:929–931, 1989.

    Article  PubMed  CAS  Google Scholar 

  29. Pezzella F, Tse AGD, Cordell JL, Pulford KAF, Gatter KC, Mason DY: Expression of the bcl-2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol 137:225–232, 1990.

    PubMed  CAS  Google Scholar 

  30. Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, Kieff E, Rickinson A: Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. McDonnell TJ, Korsmeyer SJ: Progression from lymphoid hyperplasia to high-grade malignant lymphmoa in mice transgenic for the t(14;18). Nature 349:254–256, 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Strasse A, Harris AW, Bath ML, Cory S: Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348:331–333, 1990.

    Article  Google Scholar 

  33. Barski G, Sorieul S, Cornefurt FR: Production dans des coltures in vitro de deux souches cellulaires en association de cellules de caractere ‘hybride.’ Compt Rend Acad Sc 251L: 1825–1827, 1960.

    Google Scholar 

  34. Weissman B: Genetic behavior of tumorigenticity in human cancer. Cancer Surv 9:475–485, 1990.

    PubMed  CAS  Google Scholar 

  35. Knudson AG Jr.: Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823, 1971.

    Article  PubMed  Google Scholar 

  36. Knudson AG, Meadows AT, Nichols WW, Hil R: Chromosomal deletion and retinoblastoma. N Engl J Med 295:1120–1123, 1976.

    Article  PubMed  Google Scholar 

  37. Sparkes RS, Murphree AL, Lingua RW, Sparkes MC, Field LL, Funderburk SJ, Benedict WF: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219:971–973, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS: Patient with 13 chromosome deletion: Evidence that the retinoblastoma is recessive cancer gene. Science 219:973–975, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Cavenee WK, Dryia TP, Phillips RA, Benedict WF, Godbout R, Callie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature (London) 305:779–784, 1983.

    Article  CAS  Google Scholar 

  40. Friend SH, Bernards R, Rojeli S, Weinberg RA, Rapaport JM, Alberts DM, Dryja TP: A human DAN segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature (London) 323:643–646, 1986.

    Article  CAS  Google Scholar 

  41. Goodrich D, Lee WH: The molecular genetics of retinoblastoma. Cancer Surv 9:529–553, 1990.

    PubMed  CAS  Google Scholar 

  42. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM: SV40 large T tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334:124–129, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Chellappan SP, Hiebert S, Mudryi M, Horowitz JM, Nevins JR: The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061, 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Bagchi S, Weinmann R, Raychaudhuri P: The retinoblastoma protein copurifies with E2F-I, and ElA-regulated inhibitor of the transcription factor E2F. Cell 65:1063–1072, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Huang HJS, Yee JK, Shew JY, Chen PL, Bookstein R, Friedmann T, Lee EY-HP, Lee HW: Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–1566, 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Abromson DH, Ellsworth RM, Kitchin FD, Tung G: Second nonocular tumors in retinoblastoma survivors. Ophthalmology 91:1351–1355, 1984.

    Google Scholar 

  48. Hollstein M, Sidransky D, Vogelstein B. Harris CC: p53 mutations in human cancers. Science 253:49–53, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. Malkin D, Li FP, Strong LC, Fraumeni JF Jr., Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA, Friend SH: Germline p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238, 1990.

    Article  PubMed  CAS  Google Scholar 

  50. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, Culver M, Carey JC, Copeland NG, Jenkins NA, White R, O’Connell PO: Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell 62:187–192, 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulina AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS: Type 1 neurofibromatosis gene: Identification of a large transcript disrupted in three NF1 patients. Science 249:181–186, 1992.

    Article  Google Scholar 

  52. Xu G, O’Connell P, Viskochil D, Cawthon R, Robertson M, Dunn D, Stevens J, Gesteland R, White R, Weiss R: The neurofibromatosis type I gene encodes a protein related to GAP. Cell 62:599–608, 1990.

    Article  PubMed  CAS  Google Scholar 

  53. Trahey M, McCormick F: A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Dral A, Yeger H, Lewis WH, Jones C, Housman DE: Isolation and characteriztion of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor gene locus. Cell 60:633–640, 1990.

    Article  Google Scholar 

  55. Fearon ER, Cho KR, Nigro JM, Kern SE, Wimons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247:49–56, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D, Finniear R, Markham A, Groffen J, Boguski MS, Altschul SF, Horii A, Ando H, Miyoshi Y, Miki Y, Nisgisho I, Nakamura Y: Identification of FAP locus genes from chromsome 5q21. Science 253:661–665, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, E., Weissman, B. (1993). Oncogenes and tumor suppressor genes. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics