Skip to main content

Gibbsian versus Non-Gibbsian Measures: Some Results and Some Questions in Renormalization Group Theory and Stochastic Dynamics

  • Chapter
On Three Levels

Part of the book series: NATO ASI Series ((NSSB,volume 324))

  • 558 Accesses

Abstract

We discuss some problems which arise if one tries to implement renormalization group transformations as maps from Hamiltonians to Hamiltonians. We provide various examples, involving systems not necessarily in the vicinity of a phase transition, where this can not be done, because Gibbs measures under the action of various real-space transformations become non-Gibbsian. We mention some related issues occurring in non-equilibrium problems.

Speaker at the conference

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.C.D. van Enter, R. Fernandez and A.D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and Limitations of Gibbsian the ory, J. Stat. Phys. ,72, 879 (1993).

    Article  ADS  MATH  Google Scholar 

  2. N. Goldenfeld, “Lectures on Phase Transitions and the Renormalization Group”, Addison- Wesley, Frontiers in Physics 85 (1992).

    Google Scholar 

  3. H.-O. Georgii, “Gibbs Measures and Phase Transitions”, Walter de Gruyter, De Gruyter Studies in Mathematics 9 (1988).

    Book  MATH  Google Scholar 

  4. R.B. Griffiths and D. Ruelle, Strict convexity (“continuity”) of the pressure in lattice systems, Comm. Math. Phys. ,23, 169 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  5. W.G. Sullivan, Potentials for almost Markovian random fields, Comm. Math. Phys. ,33, 61 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. O.K. Kozlov, Gibbs description of a system of random variables, Prob. Inform. Transmission ,10, 258 (1974).

    Google Scholar 

  7. R.B. Griffiths and P.A. Pearce, Position-space renormalization-group transformations: Some proofs and some problems, Phys. Rev. Lett. ,41, 917 (1978).

    Article  ADS  Google Scholar 

  8. R.B. Griffiths and P.A. Pearce, Mathematical properties of position-space renormalization-group transformations, J. Stat. Phys. ,20, 499 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  9. R.B. Israel, Banach algebras and Kadanoff transformations, in: “Random Fields (Esztergom 1979)” II, 593, North-Holland (1981).

    Google Scholar 

  10. I.A. Kashapov, Justification of the renormalization-group method, Theor. Math. Phys. ,42, 184 (1980).

    Article  MathSciNet  Google Scholar 

  11. C. Cammarota, The large block spin interaction, Nuovo Cim. B ,96, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  12. F. Martinelli and E. Olivieri, Some remarks on pathologies of renormalization group transfor mations for the Ising model, J. Stat. Phys. ,72 (1993).

    Google Scholar 

  13. A.C.D. van Enter, R. Fernandez and R. Kotecký, in preparation.

    Google Scholar 

  14. R.L. Dobrushin and S.B. Shlosman, Completely analytical interactions: Constructive descrip tion, J. Stat. Phys. ,46, 983 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. L.N. Tolstoy, “Anna Karenina”, translated by A. and L. Maude, Everyman–s Library, Knopf (1992).

    Google Scholar 

  16. G. Orwell, “Animal Farm”, Secker & Warburg (1945).

    Google Scholar 

  17. R.B. Israel, private communication.

    Google Scholar 

  18. T. Kennedy, Some rigorous results on majority rule renormalization group transformations near the critical point, J. Stat. Phys. ,72, 15 (1993).

    Article  ADS  MATH  Google Scholar 

  19. R.H. Schonmann, Projections of Gibbs measures may be non-Gibbsian, Comm. Math. Phys. ,124, 1 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Maes and K. Vande Velde, The (non-)Gibbsian nature of states invariant under stochastic transformations, Leuven preprint (1993).

    Google Scholar 

  21. R. Fernandez and C.-E. Pfister, in preparation.

    Google Scholar 

  22. P. Holický and M. Zahradník, On entropic repulsion in low temperature Ising models, in: “Proceedings of the NATO Advances Studies Institute Workshop on Cellular Automata and Cooperative Systems (Les Houches (1992))”, 275 Kluwer (1993).

    Google Scholar 

  23. J. Fröhlich and C.-E. Pfister, Semi-infinite Ising model I, Comm. Math. Phys. ,109, 493 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Fröhlich and C.-E. Pfister, Semi-infinite Ising model II, Comm. Math. Phys. ,112, 51 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S. Albeverio and B. Zegarlinski, Global Markov property in quantum field theory and statis tical mechanics: A review on results and problems in: “Ideas and Methods in Quantum and Statistical Physics”, 331, Cambridge University Press (1992).

    Google Scholar 

  26. T.M. Liggett, “Interacting Particle Systems”, Springer (1985).

    Book  MATH  Google Scholar 

  27. J.L. Lebowitz and R.H. Schonmann, Pseudo-free energies and large deviations for non-Gibbsian FKG measures, Prob. Th. Rel. Fields ,77, 49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  28. J.L. Lebowitz, C. Maes and E.R. Speer, Statistical mechanics of cellular automata, J. Stat. Phys. ,59, 117 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. F. Martinelli and E. Scoppola, A simple stochastic cluster dynamics: Rigorous results, J. Phys. A ,24, 3135 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  30. K. Vande Velde kindly informed us that both he and E.R. Speer have proven the non-Gibbsianness of the stationary states of the totally asymmetric exclusion process.

    Google Scholar 

  31. C.-E. Pfister, Large deviations and phase separation in the two-dimensional Ising model, Helv. Phys. Act ,64, 953.

    Google Scholar 

  32. D. Ioffe, Large deviations for the 2D Ising model, Courant Institute preprint (1993). We thank Chuck Newman for informing us about this work and providing us with a preprint

    Google Scholar 

  33. J. Lörinczi, these proceedings.

    Google Scholar 

  34. J. Lörinczi and M. Winnink, Some remarks on Almost Gibbs states, in: “Proceedings of the NATO Advanced Studies Institute Workshop on Cellular Automata and Cooperative Systems (Les Houches (1992))”, 423, Kluwer (1993).

    Google Scholar 

  35. A.C.D. van Enter, R. Fernandez and A.D. Sokal, Renormalization transformations as a source of examples and problems in probability and statistics, Proceedings of V CLAPEM, Sao Paulo (1993), to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Enter, A.C.D., Fernández, R., Sokal, A.D. (1994). Gibbsian versus Non-Gibbsian Measures: Some Results and Some Questions in Renormalization Group Theory and Stochastic Dynamics. In: Fannes, M., Maes, C., Verbeure, A. (eds) On Three Levels. NATO ASI Series, vol 324. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2460-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2460-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6047-6

  • Online ISBN: 978-1-4615-2460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics