Skip to main content

Quantum Adiabatic Evolution

  • Chapter
On Three Levels

Part of the book series: NATO ASI Series ((NSSB,volume 324))

Abstract

The notion of adiabatic evolution or adiabatic process is an important theoretical concept, which occurs at several places in Physics. The main feature of this concept is that although the process is very slow, global changes can take place without local changes. Adiabaticity is at the border between dynamics and statics. This concept was introduced by Boltzmann in Classical Mechanics through the notion of adiabatic invariants. In Thermodynamics adiabatic processes play an important role. In Quan tum Mechanics, if the state of the system is an eigenfunction ψ(t o) for the eigenvalue e(t o) at t = t o, then in the adiabatic limit the state of the system at time t = t 1 is an eigenfunction ψ(t 1) for the eigenvalue e(t 1), provided the energy-level e(t) remains isolated during the time-interval [t 0,t 1]. Even if H(t o) = H(t 1), the eigenfunction ψ(t 1) is generally different from ψ(t o) by a phase which can be decomposed into a dynamical phase related to the energy-level e(t) and a geometric phase related to the spectral subspaces visited during the adiabatic process. This is the fundamental observation of Berry 1 which gave rise to extensive developments during the last ten years2,3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc.Roy.Soc.Lond.A 392: 45 (1984).

    Article  ADS  MATH  Google Scholar 

  2. A. Shapere and F. Wilczek, “Geometric Phases in Physics”, World Scientific, Singapore, New Jersey, London, Hong Kong (1989).

    MATH  Google Scholar 

  3. J.W. Zwanziger, M. Koenig and A. Pines, Berry’s phase, Ann. Rev. Phys. Chem. ,41, 601 (1990).

    Article  ADS  Google Scholar 

  4. C.A. Mead, The geometric phase in molecular systems, Rev.Mod. Phys. ,64, 51 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Born and V. Fock, Beweis des Adiabatensatzes, Zeit.f.Phys. ,51, 165 (1928).

    Article  ADS  MATH  Google Scholar 

  6. T. Kato, On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Japan,5 ,435 (1950).

    Article  ADS  Google Scholar 

  7. L.M. Garrido, Generalized adiabatic invariance, J. Math. Phys. ,5, 335 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  8. T. Kato, “Perturbation theory for linear operators”, Springer Berlin, Heidelberg, New-York (1966).

    MATH  Google Scholar 

  9. S.G. Krein, “Linear differential equations in Banach spaces”, Providence, R.I.: Transl. Math.Mon. 29 (1971).

    Google Scholar 

  10. J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum Hall effect, Comm. Math. Phys. ,110, 33 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. A. Joye and C.-E. Pfister, Full asymptotic expansion of transition probabilities in the adiabatic limit, J. Phys. A ,24, 753 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Joye and C.-E. Pfister, Superadiabatic evolution and adiabatic transition probability between two non-degenerate levels isolated in the spectrum, J. Math. Phys. ,34, 454 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Joye, H. Kunz and C.-E. Pfister, Exponential decay and geometric aspect of transition probabilities in the adiabatic limit, Ann. Phys. ,208, 299 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. A. Joye and C.-E. Pfister, Exponentially small adiabatic invariant for the Schrödinger equation, Comm. Math. Phys. ,140, 15 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Martinez, Precise exponential estimates in adiabatic theory, Preprint (1993).

    Google Scholar 

  16. V. Jaksic and J. Segert, Exponential approach to the adiabatic limit and the Landau-Zener formula, Rev. Math. Phys. ,4, 529 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Nenciu, Linear adiabatic theory. Exponential estimates, Comm. Math. Phys. ,152, 479 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. Sjöstrand, Remarque sur des projecteurs adiabatiques du point de vue pseudodifférentiel Preprint (1993).

    Google Scholar 

  19. A. Joye and C.-E. Pfister, Non-abelian geometric effect in quantum adiabatic transitions, Phys. Rev. A to appear (1993).

    Google Scholar 

  20. J.-T. Hwang and P. Pechukas, The adiabatic theorem in the complex plane and the semi-classical calculation of non-adiabatic transition amplitudes, J. Chem. Phys. ,67, 4640 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  21. M.V. Berry, Geometric amplitude factors in adiabatic quantum transitions, Proc. Roy. Soc.London A ,430, 405 (1990).

    Article  ADS  Google Scholar 

  22. J.W. Zwanziger, S.P. Rucker and G.C. Chingas, Measuring the geometric component of the transition probability in a two-level system, Phys. Rev. A ,43, 323 (1991).

    Article  ADS  Google Scholar 

  23. A. Joye and C.-E. Pfister, Absence of geometrical correction to the Landau-Zener formula, Phys. Lett. A ,169, 62 (1992).

    Article  ADS  Google Scholar 

  24. A. Joye, Proof of the Landau-Zener formula, Asymptotic Analysis to appear (1993).

    Google Scholar 

  25. A. Joye and C.-E. Pfister, Semi-classical asymptotics beyond all orders for simple scattering systems, Preprint (1993).

    Google Scholar 

  26. A. Joye, Non-trivial prefactors in adiabatic transition probabilities induced by high order com plex degeneracies J. Phys. A to appear (1993).

    Google Scholar 

  27. M.V. Berry and R. Lim, Universal transition prefactors derived by superadiabatic renormaliza- tion, Preprint (1993).

    Google Scholar 

  28. A. Joye, G. Mileti and C.-E. Pfister, Interferences in adiabatic transition probabilities mediated by Stokes lines, Phys. Rev. A 44, 4280 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Joye, A., Pfister, CE. (1994). Quantum Adiabatic Evolution. In: Fannes, M., Maes, C., Verbeure, A. (eds) On Three Levels. NATO ASI Series, vol 324. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2460-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2460-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6047-6

  • Online ISBN: 978-1-4615-2460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics