Skip to main content

Dynamics of Optical Excitations in Semiconductors

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

  • 2375 Accesses

Abstract

A quantum ħω of optical excitation will drive a solid out of thermal equilibrium provided that ħω≫ kT. Here T is the temperature of the solid, and kT characterizes the mean energy of its thermally excited degrees of freedom. The condition is usually met, even far above room temperature, for optical interband transitions in semiconductors. During and after the absorption process a number of electronic and vibronic excited states will be populated and interact with each other. These excitations will subsequently relax towards equilibrium, through exchange of momentum and energy with the rest of the system. In this chapter we shall discuss the elementary steps in this sequence, and the role of optical spectroscopy as a powerful tool for their experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sadao Adachi “GaAs, AlAs and AlxGal™xAs: Material Parameters for use in research and device applications”, J.Appl.Phys.58, R1 (1985).

    Article  Google Scholar 

  2. J. Blakemore “Semiconducting and other major properties of gallium arsenide”, J.Appl.Phys.53, R123.

    Google Scholar 

  3. see e.g “Ultrafast Phenomena VIII”, Springer Series in Chemical Physics (Springer, Berlin, 1992).

    Google Scholar 

  4. A similar impact of coherent laser spectroscopy occurred in chemistry, see e.g. the issue on “Femtochemistry” in Physical Chemistry, Vol.97 (1993).

    Google Scholar 

  5. J. Shah “Ultrafast Luminescence Spectroscopy”, in: Modern Problems in Condensed Matter Sciences, eds. V.M. Agranovich and A.A. Maradudin, Vol.35 (North-Holland, Amsterdam, 1992), Ch.2.

    Google Scholar 

  6. H. Heinrich, G. Bauer, F. Kuchar (eds.) “Physics and Technology of Submicron Structures”, Solid State Sciences Vol. 83 (Springer, Berlin, 1988).

    Google Scholar 

  7. C. Weisbuch, B. Vinter “Quantum Semiconductor Structures:Fundamentals and Applications” (Academic Press, Boston, 1991).

    Google Scholar 

  8. Mark A. Reed, Wiley P. Kirk (eds.) “Nanostructure Physics and Fabrication” (Academic Press, New York, 1989) Ch.2.

    Google Scholar 

  9. N.W. Ashcroft, N.D. Mermin, “Solid State Physics” (Holt, Rhinehart and Winston, Philadelphia, 1981), Ch.8.

    Google Scholar 

  10. N.W. Ashcroft, N.D. Mermin, Appendix M; see also R.E. Peierls “Quantum Theory of Solids” (Clarendon Press, Oxford, 1965), Ch.6.4.

    Google Scholar 

  11. P. Lee and T.V. Ramakrishnan “Disordered Electronic Systems”, Rev.Mod.Phys. 57, 287(1985).

    Article  Google Scholar 

  12. M.L. Cohen and V. Heine, Solid State Physics Vol.24 (Academic Press, New, York, 1970).

    Google Scholar 

  13. C. Radin and L.S. Schulman “Periodicity of Classical Ground States”, Phys.Rev.Lett. 51, 752 (1983)

    Article  MathSciNet  Google Scholar 

  14. J. Miekisz and C. Radin “Why solids are not really crystalline”, Phys.Rev.B 39, 1950 (1989).

    Article  MathSciNet  Google Scholar 

  15. P. Fulde, “Electron Correlations in Molecules and Solids” Springer Series in Solid State Sciences, Vol.100 (Springer, Berlin, 1993).

    Google Scholar 

  16. J.C. Phillips “Bands and Bonds in Semiconductors” (Academic Press, New York, 1973) Ch.7.

    Google Scholar 

  17. F. Bassani, G. Pastori Parravicini “Electronic States and Optical Transitions in Solids” (Pergamon Press, Oxford, 1975).

    Google Scholar 

  18. P.W. Anderson, “Concepts in Solids” (Benjamin Publishers, London, 1978) Ch.2.

    Google Scholar 

  19. O. Madelung “Introduction to Solid State Theory” Vol.1, Springer Series in Solid State Science (Springer, Berlin, 1978)

    Book  Google Scholar 

  20. M. Lanoo, in: “Materials Science and Technology” Vol.4 (eds. R.W. Kahn, P. Haasen, E.J. Kramer, Verlag Chemie, Weinheim, 1991),Ch.l.

    Google Scholar 

  21. M. Born and J.R. Oppenheimer, Ann.d.Physik 84, 457 (1927).

    Article  MATH  Google Scholar 

  22. A.A. Maradudun in: “Dynamical Properties of Solids” (eds. G.K. Horton and A.A. Maradudin, North Holland, Amsterdam, 1974) p.1

    Google Scholar 

  23. R.E. Peierls “Quantum Theory of Solids” (Clarendon Press, Oxford, 1965), Ch.2.

    Google Scholar 

  24. M. Born and K. Huang “Dynamical Theory of Crystal Lattices” (Clarendon Press, Oxford, 1985) Ch.4.

    Google Scholar 

  25. J. Ziman “Electrons and Phonons” (Oxford University Press, Oxford, 1963) Ch.7.

    Google Scholar 

  26. D. Adler “Electronic Phase Transitions”, in: “Essays in Physics” (eds. G.K.T. Tonn and G.N. Fowler, Academic Press, London, 1970) Vol.1, p.33.

    Google Scholar 

  27. L. Pauling and E.B. Wilson “Introduction to Quantum Mechanics” (Dover Publications, New York, 1963) Ch.32.

    Google Scholar 

  28. W. Schaefer “Theory of Dense Nonequilibrium Exciton Systems”, in: “Optical Nonlinearities and Instabilities in Semiconductors” (ed. H. Haug, Academic Press, New York, 1988) Ch.6.

    Google Scholar 

  29. H. Haug “Microscopic Theory of the Optical Band Edge Nonlinearities”, (ed. H. Haug, Academic Press, New York, 1988) Ch. 3.

    Google Scholar 

  30. R. Zimmermann “Many Particle Theory of Highly Excited Semiconductors” (B.G. Teubner Verlagsgesellschaft, Leipzig, 1988).

    Google Scholar 

  31. J.P. Dahl and J. Avery “Local Density Approximations in Quantum Chemistry and Solid State Physics” (Plenum Press, New York, 1984)

    Google Scholar 

  32. R. Dreizler, E.U. Gross “Density Functional Theory” (Springer, Berlin, 1990).

    Book  MATH  Google Scholar 

  33. L.D. Landau, E.M. Lifshitz “Lehrbuch der Theoretischen Physik” Vol.III (Akademie-Verlag, Leipzig, 1966) p.251.

    Google Scholar 

  34. P. Hohenberg and W. Kohn, Phys.Rev. 136, B864 (1964)

    Article  MathSciNet  Google Scholar 

  35. W. Kohn and L.J. Sham, Phys.Rev. 140, A1133(1965).

    Article  MathSciNet  Google Scholar 

  36. see, e.g. W. Hanke and L.J. Sham, Phys.Rev. B21, 4656 (1980).

    Google Scholar 

  37. M. Lanoo, in: “Materials Science and Technology” Vol.4 (eds. R.W. Kahn, P. Haasen, E.J. Kramer, Verlag Chemie, Weinheim, 1991),Ch.l.

    Google Scholar 

  38. J.R. Chelikowsky and M.L. Cohen “Electronic Structure of GaAs”, Phys.Rev. B14, 556 (1976)

    Google Scholar 

  39. M.L. Cohen and J.R. Chelikowsky, “Electronic Structure and Optical Properties of Semiconductors” Springer Solid State Sciences Vol.75 (Springer, Berlin, 1988).

    Google Scholar 

  40. J.D. Dow “Final-State Interactions in the Optical Spectra of Solids: Elements of Exciton Theory”, in: “New Developments in the Optical Properties of Solids” (ed. B. Seraphin, North Holland Publishing Company, Amsterdam, 1976) Ch.2.

    Google Scholar 

  41. W. Hanke “The Role of Electron-Hole Interaction in the Optical Spectra of Semiconductors and Insulators”, in: Advances in Solid State Physics, Vol.19 (Vieweg, Braunschweig, 1979) p.43.

    Google Scholar 

  42. W.A. Harrison “Electronic Structure and the Properties of Solids” (W.H. Freeman, San Francisco, 1980) Ch.9.

    Google Scholar 

  43. E.O. Kane, in: Semiconductors and Semimetals, Vol.1 (eds. R.K. Willardson and A.C. Beer, Academic Press, New York, 1966) p.75.

    Chapter  Google Scholar 

  44. P. Lawaetz “Valence Band Parameters in Cubic Semiconductors”, Phys.Rev. B4, 3760 (1971).

    Google Scholar 

  45. C. Hermann and C. Weisbuch “k.p perturbation theory in III-V compounds and alloys: a reexamination”, Phys.Rev.B 15, 823 (1977).

    Article  Google Scholar 

  46. D.des Cloizeaux “Linear Response, Generalized Susceptibility and Dispersion Theory”, in: Theory of Condensed Matter (IAEA, Vienna, 1968)

    Google Scholar 

  47. F. Stern in: Solid State Physics Vol.15 (eds. F. Seitz, D. Turnbull, Academic Press, New York, 1963) p.299.

    Google Scholar 

  48. M. Cardona “Optical Constants of Insulators: Dispersion Relations”, in: Optical Properties of Solids (eds. S. Nudelman and S.S. Mitra, Plenum Press, New York, 1969) Ch.6.

    Google Scholar 

  49. J.D. Jackson “Classical Electrodynamics” (J. Wiley and sons, New York, 1975) Ch.7.

    MATH  Google Scholar 

  50. R. Kubo, J.Phys.Soc.Japan 12, 570 (1957).

    Article  MathSciNet  Google Scholar 

  51. F. Wooten “Optical Properties of Solids” (Academic Press, New York, 1972) Ch.5.

    Google Scholar 

  52. N.F. Mott, Phil.Mag. 6, 287 (1961).

    Article  Google Scholar 

  53. R.J. Elliott “Intensity of Optical Absorption by Excitons”, Phys.Rev. 108, 1384 (1957).

    Article  Google Scholar 

  54. Y. Toyozawa “Interaction between Elementary Excitations and Spectral Line Shapes” in: S. Nakajima, Y. Toyozawa and R. Abe “The Physics of Elementary Excitations” (Springer, Berlin, 1980) p.317.

    Google Scholar 

  55. J.O. Dimmock “Excitons”, in: Semiconductors and Semimetals Vol.3 (eds. R.K. Willardson and A.C. Beer, Academic Press, New York, 1967) Ch.5.

    Google Scholar 

  56. R.J. Elliott “Theory of Excitons I”, in: Polarons and Excitons (eds. C.G. Kuper and G.D. Whitfield, Oliver and Boyd, Edinburgh, 1963) p.269.

    Google Scholar 

  57. K. Cho “Excitons”, in: Topics in Applied Physics, Vol.14 (Springer, Berlin, 1979)

    Google Scholar 

  58. E.I. Rashba, M.D. Sturge “Excitons” (North Holland, Amsterdam, 1982)

    Google Scholar 

  59. J.J. Hopfield “Resonant Scattering of Polaritons as Composite Particles”, Phys.Rev. 182, 945 (1969).

    Article  Google Scholar 

  60. R.G. Ulbrich “Dense Nonequilibrium Excitations: Band Edge Absorption Spectra of Highly Excited Gallium Arsenide”, in: “Optical Nonlinearities and Instabilities in Semiconductors” (ed. H. Haug, Academic Press, New York, 1988) Ch.5.

    Google Scholar 

  61. C. Weisbuch and R.G. Ulbrich “Resonant Light Scattering Mediated by Excitonic Polaritons in Semiconductors”, in: “Light Scattering in Solids III” Topics in Applied Physics Vol.51 (eds. M. Cardona and G. Güntherodt, Springer, Berlin, 1982) Ch.7.

    Google Scholar 

  62. J.J. Hopfield “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals”, Phys.Rev. 112, 1555 (1958).

    Article  MATH  Google Scholar 

  63. W.C. Tait “Quantum Theory of a Basic-Light-Matter Interaction”, Phys.Rev. B5, 648 (1972)

    MathSciNet  Google Scholar 

  64. R.G. Ulbrich and G.W. Fehrenbach “Polariton Wavepacket Propagation in the Exciton Resonance of a Semiconductor”, Phys.Rev.Lett. 13, 963 (1979)

    Article  Google Scholar 

  65. J. Aaviksoo “Time-resolved studies of excitonic polaritons”, Journal of Luminescence 48&49, 57(1991).

    Article  Google Scholar 

  66. P.M. Platzman and P.A. Wolff “Waves and Interactions in Solid State Plasmas”, in: Solid State Physics Vol.13 (Academic Press, New York, 1973) Ch.1.

    Google Scholar 

  67. J. Appel and A.W. Overhauser, “Acoustic plasma modes”, Phys.Rev. B26, 507 (1982).

    Google Scholar 

  68. R. Zimmermann “The Dynamical Stark Effect of Excitons”, in: Advances in Solid State Physics Vol.30 (Vieweg, Braunschweig, 1990)

    Google Scholar 

  69. M. Rice in: Solid State Physics Vol.32 (Academic Press, New York, 1977) p.1.

    Google Scholar 

  70. H. Haug and S. Schmitt-Rink, Progr.Quant.Electr. 9, 3 (1984).

    Article  Google Scholar 

  71. H. Haug and S. Schmitt-Rink “Basic Mechanisms of the Optical Nonlinearities of Semiconductors Near the Band Edge”, J.Opt.Soc.Am. B2, 1135 (1985).

    Google Scholar 

  72. P. Debye and E. Hueckel, Phys.Z. 24, 185 (1923)

    MATH  Google Scholar 

  73. P. Debye and E. Hueckel, Phys.Z. 24, 305 (1923).

    Google Scholar 

  74. C. Comte and P. Nozieres, “Exciton Bose condensation: the ground state of an electron-hole gas” J.Physique 43, 1069 (1982)

    Article  Google Scholar 

  75. C. Comte and P. Nozieres, “Exciton Bose condensation: the ground state of an electron-hole gas” J.Physique 43, 1083(1982).

    Article  Google Scholar 

  76. M. Combescot and J. Bok “Crystalline, Amorphous and Liquid Silicon”, in: Cohesive Properties of Semiconductors under Laser Irradiation, NATO ASI Series Vol.E69 (Nijhoff Publishers, den Haag, 1983) p.289.

    Chapter  Google Scholar 

  77. R. Zimmermann, K. Kilimann, W.D. Kraeft, D. Kremp, G. Roepke, “Dynamical Screening and Self-Energy of Excitons in the Electron-Hole Plasma” phys.stat.sol. b90, 175 (1978).

    Google Scholar 

  78. [4.26] L.D. Landau and E.M. Lifschitz “Lehrbuch der Theoretischen Physik” Vol.III (Akademie Verlag, Berlin, 1966) p.122 ff.

    Google Scholar 

  79. J.J. Hopfield “Aspects of Polaritons”, Proc.Int.Conf.Phys.Semiconductors, Kyoto 1966 (J.Phys.Soc.Japan Vol.21, Suppl., 1966) p.77

    Google Scholar 

  80. S. Pekar “Exciton Dispersion in Crystals”, Soviet Physics JETP 6, 785 (1958)

    MathSciNet  Google Scholar 

  81. V.M. Agranovitch and V.L. Ginzburg “Spatial Dispersion in Crystal Optics and the Theory of Excitons” (Interscience, New York, 1966)

    Google Scholar 

  82. V.M. Agranovitch and V.M. Ginzburg “Crystal Optics with Spatial Dispersionand Excitons” (Springer, Berlin, 1984).

    Google Scholar 

  83. H. Fröhlich, “Theory of Dielectrics — Dielectric Constant and Dielectric Loss” (Oxford University Press, Oxford, 1949).

    Google Scholar 

  84. see the chapter by S. Haroche in this volume.

    Google Scholar 

  85. M. Lindberg, R. Binder, and S.W. Koch “Theory of the Semiconductor Photon Echo”, Phys.Rev. A 45, 1865 (1992).

    Article  Google Scholar 

  86. H. Haug, S.W. Koch “Quantum Theory of the Optical and Electronic Properties of Semiconductors” 2nd ed. (World Scientific, Singapore, 1993) Ch.13.

    Google Scholar 

  87. L. Allen and J.H. Eberly “Optical Resonance and Two-Level Atoms” (Wiley, New York, 1975).

    Google Scholar 

  88. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, and H. Morkoc, “Dynamical Stark Effect of Excitons”, Phys.Rev.Lett. 55, 1335 (1985).

    Article  Google Scholar 

  89. R.G. De Voe and R.G. Brewer, “Optical Coherent Transients by Laser Frequency Switching” Phys.Rev.Lett. 40, 862 (1978)

    Article  Google Scholar 

  90. R.G. Brewer, in: “Nonlinear Spectroscopy” Proc.Int.School Physics Enrico Fermi, Course 64 (ed. N. Bloembergen, North Holland, Amsterdam, 1977).

    Google Scholar 

  91. Marc D. Levenson “Introduction to Nonlinear Laser Spectroscopy” (Academic Press, New York, 1982) Ch.6.

    Google Scholar 

  92. R. Zimmermann “Many Particle Theory of Highly Excited Semiconductors” (Teubner, Leipzig, 1987) Chs.3 and 5.

    Google Scholar 

  93. J.C. Phillips “Bands and Bonds in Semiconductors” (Academic Press, New York, 1973) Ch.7.

    Google Scholar 

  94. A.V. Kuznetsov “Interactions of ultrashort light pulses with semiconductors: Effective Bloch equations with relaxation and memory effects”, Phys.Rev. B44, 8721 (1991)

    Google Scholar 

  95. M. Koch, J. Feldmann, G. von Plessen, E.O. G’bel, and P. Thomas “Quantum Beats versus Polarization Interference: An Experimental Distinction”, Phys.Rev.Lett. 69, 3631 (1992)

    Article  Google Scholar 

  96. J. Feldmann, in: Advances in Solid State Physics Vol.32 (ed. U. Rössler, Vieweg, Braunschweig, 1992) p.81.

    Google Scholar 

  97. D. Kim, J. Shah, A. Vinattieri, T. Damen, D.A.B. Miller, W. Schäfer,and L. Pfeiffer “Femtosecond Pulse Distortion in Quantum Wells: Intensity and Phase Sensitive Measurements”, Talk QPD18-1/40 presented at CLEO 1993.

    Google Scholar 

  98. F. Wooten “Optical Properties of Solids” (Academic Press, New York, 1972) Chs.3 and 5.

    Google Scholar 

  99. B. Laks, G.F. Neumark, A. Hangleiter and S.T. Pantelides, Phys.Rev.Lett. 61, 1229 (1988).

    Article  Google Scholar 

  100. K. Ridley “Quantum Processes in Semiconductors” (Oxford Science Publications, Oxford, 1993) Ch.3

    Google Scholar 

  101. R.P. Feynman “Statistical Mechanics” (W.A. Benjamin, Reading, 1972) Ch.4.

    Google Scholar 

  102. see e.g. Proc. 5th Int.Conf. on Hot Carriers in Semiconductors, Boston, 1987 (Pergamon Press, New York, 1988) Ch.4.

    Google Scholar 

  103. see Ref.l.l.

    Google Scholar 

  104. A. Stahl and I. Balslev, “Electrodynamics of the Semiconductor Band Edge” (Springer, Berlin, 1986).

    Google Scholar 

  105. H.J. Eichler “Forced Light Scattering at Laser-Induced Gratings — a Method for Investigation of Optically Excited Solids”, in: “Advances in Solid State Physics” Vol.18 (Vieweg Verlag, Braunschweig, 1978) p.241.

    Google Scholar 

  106. E.P. Ippen and C.V. Shank, in: “Ultrashort Light Pulses”, Topics in Applied Physics Vol.18 (ed. S.L. Shapiro, Springer, Berlin, 1977)

    Google Scholar 

  107. see also “Laser-Induced Dynamic Gratings” (ed. H.J. Eichler, Springer Series in Optical Sciences Vol.50, 1986) Ch.7.

    Google Scholar 

  108. M. Born and E. Wolf “Principles of Optics” (Pergamon Press, Oxford, 1970) Ch.10.

    Google Scholar 

  109. S. Freundt, PhD thesis, University Goettingen, 1994 (unpublished).

    Google Scholar 

  110. G. Böhne, S. Freundt, S. Arlt, D. Pfister, and R.G. Ulbrich, “Phase and Amplitude of Coherently Driven Interband Polarization in Gallium Arsenide”, Int.Conf.Phys.Semiconductors, Vancouver, 1994 (to be published).

    Google Scholar 

  111. Landolt-Börnstein “Numerical Data and Functional Relationships in Science and Technology”, Group III, Vols.17a,b (Berlin, Springer, 1982).

    Google Scholar 

  112. P. Grosse “Freie Elektronen in Festkörpern” (Springer, Berlin,1979), Ch.3. [6.9] see the chapter by C. Andreani in this volume.

    Book  Google Scholar 

  113. A. Knorr, R. Binder, M. Lindberg and S.W. Koch “Theoretical Study of Resonant Ultrashort-Pulse Propagation in Semiconductors”, Phys.Rev.A 46, 7179(1992).

    Article  Google Scholar 

  114. P.A. Harten, A. Knorr, J.P. Sokoloff, F. Brown de Colstoun, S.G. Lee, R. Jin, E.M. Wright, G. Kithorova, H.M. Gibbs, S.W. Koch, and N. Peyghambarian “Propagation-Induced Escape from Adiabatic Following in a Semiconductor”, Phys.Rev.Lett. 9, 852 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ulbrich, R.G. (1995). Dynamics of Optical Excitations in Semiconductors. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics