Skip to main content

A Vaccine for Gonorrhea

  • Chapter
New Bacterial Vaccines

Part of the book series: Medical Intelligence Unit ((MIUN))

Summary

There is minimal evidence for naturally-acquired immunity to reinfection by the gonococcus. However, recent improvements in understanding the roles in pathogenesis played by a variety of cell surface molecules, availability of multiple models for infection including human volunteers, and development of techniques for delivering antigens for stimulating mucosal immune responses provide the means to determine whether a vaccine for gonorrhea is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Platt R, Rice PA, McCormack WM. Risk of acquiring gonorrhea and prevalence of abnormal adnexal findings among women recently exposed to gonorrhea. JAMA 1983; 250:3205–3209.

    Article  PubMed  CAS  Google Scholar 

  2. Westrom L, Eschenbach D. Pelvic inflammatory disease. In: Holmes KK, Mardh PA, Sparling PF et al. eds. Sexually Transmitted Diseases. 3rd ed. New York: McGraw-Hill Companies Inc., 1999:783–809.

    Google Scholar 

  3. Hook EW, Handsfield HH. Gonococcal infections in the adult. In: Holmes KK, Mardh PA, Sparling PF et al. eds. Sexually Transmitted Diseases. 3rd ed. New York: McGraw-Hill Companies, Inc., 1999:451–472.

    Google Scholar 

  4. Cecil JA, Howell MR, Tawes JJ et al. Features of Chlamydia trachomatis and Neisseria gonorrhoeae infection in male army recruits. J Infect Dis 2001; 184:1216–1219.

    Article  PubMed  CAS  Google Scholar 

  5. Handsfield HH, Lipman TO, Harnish JP et al. Asymptomatic gonorrhea in men. Diagnosis natural course, prevalence and significance. N Engl J Med 1974; 290:117–123.

    Article  PubMed  CAS  Google Scholar 

  6. Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Infect 1999; 75:3–17.

    Article  PubMed  CAS  Google Scholar 

  7. DeNeeling AJ, van Santen-Verheuvel M, Spaargaren J et al. Antimicrobial resistance of Neisseria gonorrhoeae and emerging ciprofloxacin resistance in the Netherlands, 1991 to 1998. Antimicrob Agents Chemother 2000; 44:3184–3185.

    Article  CAS  Google Scholar 

  8. Tanaka M, Nakayama H, Haraoka M et al. Antimicrobial resistance of Neisseria gonorrhoeae and high prevalence of ciprofloxacin-resistant isolates in Japan, 1993–1998. J Clin Microbiol 2000; 38:521–525.

    PubMed  CAS  Google Scholar 

  9. Hill J. Experimental infection with Neisseria gonorrhoeae. American Journal of Syphilis, Gonorrhea, and Venereal Diseases 1942; 27:733–771.

    Google Scholar 

  10. Ober WB. Boswell’s gonorrhea. NY Academy of Medicine 1969; 45:587–636.

    CAS  Google Scholar 

  11. Spence JM, Clark VL. Role of ribosomal protein L12 in gonococcal invasion of Hec1B cells. Infect Immun 2000; 68:5002–5010.

    Article  PubMed  CAS  Google Scholar 

  12. Pizza M, Scarlato V, Masignani V et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000; 287:1816–1820.

    Article  PubMed  CAS  Google Scholar 

  13. Eyre J, Stewart B. The treatment of gonococcus infections by vaccines. Lancet 1909; 76–81.

    Google Scholar 

  14. Greenberg L, Diena B, Ashton F et al. Gonococcal vaccine studies in inuvik. Can J Pub Health 1974; 65:29–33.

    CAS  Google Scholar 

  15. Arko RJ, Duncan WP, Brown WJ et al. Immunity in infection with Neisseria gonorrhoeae: duration and serological response in the chimpanzee. J Infect Dis 1976; 133:441–447.

    Article  PubMed  CAS  Google Scholar 

  16. Yamasaki R, Kerwood D, Schneider H et al. The structure of lipooligosaccharide produced by Neisseria gonorrhoeae, strain 15253, isolated from a patient with disseminated infection. J Biol Chem 1994; 269:30345–30351.

    PubMed  CAS  Google Scholar 

  17. Minor SY, Banerjee A, Gotschlich EC. Effect of α-oligosaccharide phenotype of Neisseria gonorrhoeae strain MS11 on invasion of chang conjunctival, Hec-l-b endometrial, and ME-180 cervical cells. Infect Immun 2000; 68:6526–6534.

    Article  PubMed  CAS  Google Scholar 

  18. Mandrell RE, Apicella MA. Lipo-oligosaccharides (LOS) mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiol 1993; 187:382–402.

    Article  CAS  Google Scholar 

  19. Burch CL, Danaher RJ, Stein DC. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J Bacteriol 1997; 179:982–986.

    PubMed  CAS  Google Scholar 

  20. Gill MJ, McQuillen DP, VanPutten JP et al. Functional characterization of a sialyltransferase-deficient mutant Neisseria gonorrhoeae. Infect Immun 1996; 64:3374–3378.

    PubMed  CAS  Google Scholar 

  21. Parsons NJ, Cole J, Smith H. Resistance to human serum of gonococci in urethral exudates is reduced by neuraminidase. Proc R Soc Lond B Biol Sci 1990; 241:3–5.

    Article  CAS  Google Scholar 

  22. Wetzler LM, Barry K, Blake M et al. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun 1992; 60:39–43.

    PubMed  CAS  Google Scholar 

  23. Rest RF, Frangipane JV. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun 1992; 60:989–997.

    PubMed  CAS  Google Scholar 

  24. Kim JJ, Zhou D, Mandrell RE et al. Effect of exogenous sialylation of lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect Immun 1992; 60:4439–4442.

    PubMed  CAS  Google Scholar 

  25. van Putten JP. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J 1993; 12:4043–4051.

    PubMed  Google Scholar 

  26. Porat N, Apicella MA, Blake M. Neisseria gonorrhoeae utilizes and enhances the biosynthesis of the asialoglycoprotein receptor expressed on the surface of the hepatic HepG2 cell line. Infect Immun 1995; 63:1498–1506.

    PubMed  CAS  Google Scholar 

  27. Schwan E, Robertson BD, Brade H et al. Gonococcal rfaF mutants express Rd2 chemotype LPS and do not enter epithelial host cells. Mol Microbiol 1995; 15:267–275.

    Article  PubMed  CAS  Google Scholar 

  28. Gulati S, McQuillan DP, Mandrell RE et al. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J Infect Dis 1996; 174:1223–1237.

    Article  PubMed  CAS  Google Scholar 

  29. Yamasaki R, Koshino H, Kurono S et al. Structural and immunochemical characterization of a Neisseria gonorrhoeae epitope defined by a monoclonal antibody 2C7; the antibody recognizes a conserved epitope on specific lipooligosaccharides in spite of the presence of human carbohydrate epitopes. J Biol Chem 1999; 274:36550–8.

    Article  PubMed  CAS  Google Scholar 

  30. Gulati S, McQuillen DP, Sharon J et al. Experimental immunization with a monoclonal anti-idiotope antibody that mimics the Neisseria gonorrhoeae lipooligosaccharide epitope 2C7. J Infect Dis 1996; 174:1238–48.

    Article  PubMed  CAS  Google Scholar 

  31. Swanson J. Colony opacity and protein II compositions of gonococci. Infect Immun 1982; 37:359–368.

    PubMed  CAS  Google Scholar 

  32. Connell TD, Shaffer D, Cannon JG. Characterization of the repertoire of hypervariable regions in the protein II (opa) gene family of Neisseria gonorrhoeae. Mol Microbiol 1990; 4:439–449.

    Article  PubMed  CAS  Google Scholar 

  33. Stern A, Brown M, Nickel P et al. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 1986; 47:61–71.

    Article  PubMed  CAS  Google Scholar 

  34. Bhat KS, Gibbs CP, Barrera O et al. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol Microbiol 1991; 5:1889–1901.

    Article  PubMed  CAS  Google Scholar 

  35. Makino S, van Putten JP, Meyer TF. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J 1991; 10:1307–1315.

    PubMed  CAS  Google Scholar 

  36. Sugasawara R, Cannon JG, Black WJ et al. Inhibition of Neisseria gonorrhoeae attachment to HeLa cells with monoclonal antibody directed against a protein II. Infect Immun 1983; 42:980–5.

    PubMed  CAS  Google Scholar 

  37. Bessen D, Gotschlich EC. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect Immun 1986; 54:154–60.

    PubMed  CAS  Google Scholar 

  38. Dekker NP, Lammel C, Mandrell RE et al. Opa (protein II) influences gonococcal organization in colonies, surface appearance, size and attachment to human fallopian tube tissues. Microb Pathog 1990; 9:19–31.

    Article  PubMed  CAS  Google Scholar 

  39. Weel JF, Hopman CT, van Putten JP. In situ expression and localization of Neisseria gonorrhoeae opacity proteins in infected epithelial cells: apparent role of Opa proteins in cellular invasion. J Exp Med 1991; 173:1395–1405.

    Article  PubMed  CAS  Google Scholar 

  40. Swanson J, Barrera O, Sola J et al. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J Exp Med 1988; 168:2121–2129.

    Article  PubMed  CAS  Google Scholar 

  41. Jerse AE, Cohen MS, Drown PM et al. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J Exp Med 1994; 179:911–920.

    Article  PubMed  CAS  Google Scholar 

  42. Bos MP, Hogan D, Belland RJ. Selection of Opa+ Neisseria gonorrhoeae by limited availability of normal human serum. Infect Immun 1997; 65:645–650.

    PubMed  CAS  Google Scholar 

  43. Belland RJ, Chen T, Swanson J et al. Human neutrophil response to recombinant neisserial Opa proteins. Mol Microbiol 1992; 6:1729–1737.

    Article  PubMed  CAS  Google Scholar 

  44. Fischer SH, Rest RF. Gonococci possessing only certain P.II outer membrane proteins interact with human neutrophils. Infect Immun 1988; 56:1574–1579.

    PubMed  CAS  Google Scholar 

  45. Naids FL, Belisle B, Lee N et al. Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (Opa) outer membrane proteins and synthetic Opa peptides. Infect Immun 1991; 59:4628–4635.

    PubMed  CAS  Google Scholar 

  46. Kupsch E, Knepper B, Kuroki T et al. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J 1993; 12:641–650.

    PubMed  CAS  Google Scholar 

  47. Chen T, Belland RJ, Wilson J et al. Adherence of pilus− Opa+ gonococci to epithelial cells in vitro involves heparin sulfate. J Exp Med 1995; 182:511–517.

    Article  PubMed  CAS  Google Scholar 

  48. Virji M, Makepeace K, Ferguson DJ et al. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol 1996; 22:941–950.

    Article  PubMed  CAS  Google Scholar 

  49. Bos MP, Grunert F, Belland RJ. Differential recognition of members of the carcinoembryonic antigen family by Opa variants of Neisseria gonorrhoeae. Infect Immun 1997; 65:2353–2361.

    PubMed  CAS  Google Scholar 

  50. Gray-Owen SD, Lorenzen DR, Haude A et al. Differential Opa specificities for CD66 receptors influence tissue interactions and cellular response to Neisseria gonorrhoeae. Mol Microbiol 1997; 26:971–980.

    Article  PubMed  CAS  Google Scholar 

  51. Duensing TD, van Putten JP. Vitronectin mediates internalization of Neisseria gonorrhoeae by chinese hamster ovary cells. Infect Immun 1997; 65:964–970.

    PubMed  CAS  Google Scholar 

  52. Gomez-Duarte OG, Dehio M, Guzman M et al. Binding of vitronectin to Opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun 1997; 65:3857–3866.

    PubMed  CAS  Google Scholar 

  53. van Putten JP, Duensing TD, Cole RL. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 1998; 29:369–379.

    Article  PubMed  Google Scholar 

  54. Freissler E, auf der Heyde A, David G et al. Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol 2000; 2:69–82.

    Article  PubMed  CAS  Google Scholar 

  55. Grassme HU, Gulbins E, Brenner B et al. Acidic sphingomyelinase mediates entry of Neisseria gonorrhoeae into nonphagocytic cells. Cell 1997; 91:605–615.

    Article  PubMed  CAS  Google Scholar 

  56. Grant CC, Bos MP, Belland RJ. Proteoglycan receptor binding by Neisseria gonorrhoeae MS11 is determined by the HV-1 region of OpaA. Mol Microbiol 1999; 32:233–42.

    Article  PubMed  CAS  Google Scholar 

  57. Virji M, Evans D, Hadfield A et al. Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 1999; 34:538–551.

    Article  PubMed  CAS  Google Scholar 

  58. Hauck CR, Grassme HU, Bock J et al. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 2000; 478:260–266.

    Article  PubMed  CAS  Google Scholar 

  59. Plummer F, Chubb H, Simonsen JN et al. Antibodies to opacity proteins (Opa) correlate with a reduced risk of gonococcal salpingitis. J Clin Invest 1994; 93:1748–1755.

    Article  PubMed  CAS  Google Scholar 

  60. Heckels JE, Fletcher JN, Virji M. The potential protective effect of immunization with outer-membrane protein I from Neisseria gonorrhoeae. J Gen Microbiol 1989; 135:2269–2276.

    PubMed  CAS  Google Scholar 

  61. Virji M, Zak K, Heckels JE. Monoclonal antibodies to gonococcal membrane protein IB; use in investigation of the potential protective effect of antibodies directed against conserved and type-specific epitopes. J Gen Microbiol 1986; 132:1621–1629.

    PubMed  CAS  Google Scholar 

  62. Mee BJ, Thomas H, Cooke SJ et al. Structural comparison and epitope analysis of outer-membrane PIA from strains of Neisseria gonorrhoeae with differing serovar specificities. J Gen Microbiol 1993; 139:2613–2620.

    Article  PubMed  CAS  Google Scholar 

  63. Butt NJ, Virji M, Vayreda F et al. Gonococcal outer-membrane protein PIB: comparative sequence analysis and localization of epitopes which are recognized by type-specific and cross-reacting monoclonal antibodies. J Gen Microbiol 1990; 136:2165–2172.

    Article  PubMed  CAS  Google Scholar 

  64. Plummer FA, Simonsen JN, Chubb H et al. Epidemiologic evidence for the development of serovar-specific immunity after gonococcal infection. J Clin Invest 1989; 83:1472–1476.

    Article  PubMed  CAS  Google Scholar 

  65. Fox KK, Thomas JC, Weiner DH et al. Longitudinal evaluation of serovar-specific immunity to Neisseria gonorrhoeae. Am J Epidemiol 1999; 149:353–358.

    Article  PubMed  CAS  Google Scholar 

  66. Morley SL, Pollard AJ. Vaccine prevention of meningococcal disease, coming soon? Vaccine 2002; 20:666–687.

    Article  Google Scholar 

  67. Feavers IM, Maiden MC. A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol Microbiol 1998; 30:647–656.

    Article  PubMed  CAS  Google Scholar 

  68. Carbonetti N, Simnad V, Elkins C et al. Construction of isogenic gonococci with variable porin structure: effects on susceptibility to human serum and antibiotics. Mol Microbiol 1990; 4:1009–1018.

    Article  PubMed  CAS  Google Scholar 

  69. Knapp JS, Tarn MR, Nowinski RC et al. Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. J Infect Dis 1984; 150:44–48.

    Article  PubMed  CAS  Google Scholar 

  70. van Putten JP, Duensing TD, Carlson J. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J Exp Med 1998; 188:941–952.

    Article  PubMed  Google Scholar 

  71. Rudel T, Schmid A, Benz R et al. Modulation of neisseria porin (PorB) by cytostolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis. Cell 1996; 85:391–402.

    Article  PubMed  CAS  Google Scholar 

  72. Lynch EC, Blake MS, Gotschlich EC et al. Reconstitution of a voltage-dependent anion-preferring porin from Neisseria gonorrhoeae. Biophys J 1983; 41:62.

    Google Scholar 

  73. Lynch EC, Blake MS, Gotschlich EC et al. Studies of porins spontaneously transferred from whole cells and reconstituted from purified proteins of Neisseria gonorrhoeae and Neisseria meningitidis. Biophys J 1984; 45:104–7.

    Article  PubMed  CAS  Google Scholar 

  74. Haines KA, Yeh L, Blake M et al. Protein I, a translocatable ion channel form Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2 — generation. J Biol Chem 1988; 263:945–951.

    PubMed  CAS  Google Scholar 

  75. Muller A, Gunther D, Dux F et al. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO J 1999; 18:339–52.

    Article  PubMed  CAS  Google Scholar 

  76. Muller A, Gunther D, Brinkmann V et al. Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J 2000; 19:5332–5343.

    Article  PubMed  CAS  Google Scholar 

  77. Ram S, Mackinnon FG, Gulati S et al. The contrasting mechanisms of serum resistance of Neisseria gonorrhoeae and group B Neisseria meningitidis. Mol Immunol 1999; 36:915–928.

    Article  PubMed  CAS  Google Scholar 

  78. Ram S, Cullinane M, Blom A et al. C4bp binding to porin mediates stable serum resistance of Neisseria gonorrhoeae. Int Immunopharmacol 2001; 1:423–432.

    Article  PubMed  CAS  Google Scholar 

  79. Smith H, Parsons NJ, Cole JA. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog 1995; 19:365–377.

    Article  PubMed  CAS  Google Scholar 

  80. Qi HL, Tai J Y, Blake M. Expression of large amounts of neisserial porin proteins in Escherichia coli and refolding of the proteins into native trimers. Infect Immun 1994; 62:2432–2439.

    PubMed  CAS  Google Scholar 

  81. Hitchcock PJ. Analyses of gonococcal lipopolysaccharide in whole-cell lysates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis: stable association of lipopolysaccharide with the major outer membrane protein (Protein I) of Neisseria gonorrhoeae. Infect Immun 1984; 46:202–212.

    PubMed  CAS  Google Scholar 

  82. Elkins C, Carbonetti NH, Varela VA et al. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Mirobiol 1992; 6:2617–2628.

    Article  CAS  Google Scholar 

  83. Rice PA, Vayo HE, Tarn MR et al. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J Exp Med 1986; 164:1735–1748.

    Article  PubMed  CAS  Google Scholar 

  84. Joiner KA, Scales R, Warren KA et al. Mechanism of action of blocking immunoglobulin G for Neisseria gonorrhoeae. J Clin Invest 1985; 76:1765–1772.

    Article  PubMed  CAS  Google Scholar 

  85. Virji M, Heckels JE. Location of a blocking epitope on outer-membrane protein III of Neisseria gonorrhoeae by synthetic peptide analysis. J Gen Microbiol 1989; 135:1895–1899.

    PubMed  CAS  Google Scholar 

  86. Plummer FA, Chubb H, Simonsen JN et al. Antibody to Rmp (outer membrane protein 3) increases susceptibility to gonococcal infection. J Clin Invest 1993; 91:339–343.

    Article  PubMed  CAS  Google Scholar 

  87. Blake M, Wetzler LM. Vaccines for gonorrhea: where are we on the curve? Trends Microbiol 1995; 3:469–474.

    Article  PubMed  CAS  Google Scholar 

  88. Elkins C, Barkley KB, Carbonetti NH et al. Immunobiology of purified recombinant outer membrane protein I of Neisseria gonorrhoeae. Mol Microbiol 1994; 14:1059–1075.

    Article  PubMed  CAS  Google Scholar 

  89. Ulmer JB, Burke CJ, Shi C et al. Pore formation and mitogenicity in blood cells by the class 2 protein of Neisseria meningitidis. J Biol Chem 1992; 267:19266–19271.

    PubMed  CAS  Google Scholar 

  90. Mackinnon FG, Ho Y, Blake M et al. The role of B/T costimulatory signals in the immunopotentiating activity of Neisserial porin. J Infect Dis 1999; 180:755–61.

    Article  PubMed  CAS  Google Scholar 

  91. Matsuka YV, Dilts DA, Hoiseth S et al. Characterization of a subunit structure and stability of the recombinant porin from Neisseria gonorrhoeae. Protein Chem 1998; 17:719–728.

    Article  CAS  Google Scholar 

  92. Sparling PF, Yobs AR. Colonial morphology of Neisseria gonorrhoeae isolated from males and females. J Bacteriol 1967; 93:513.

    PubMed  CAS  Google Scholar 

  93. Kellogg DS Jr., Peacock WL Jr., Deacon WE et al. Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol 1963; 85:1274–1279.

    PubMed  Google Scholar 

  94. Kellogg DS Jr., Cohen IR, Norins LC et al. Neisseria gonorrhoeae II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol 1968; 96:596–605.

    PubMed  Google Scholar 

  95. Tonjum T, Koomey M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships — a review. Gene 1997; 192:155–163.

    Article  PubMed  CAS  Google Scholar 

  96. Sparling PF. Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 1966; 92:1364–1371.

    PubMed  CAS  Google Scholar 

  97. Swanson J. Studies on gonococcus infection. Pili: their role in attachment of gonococci to tissue culture cells. J Exp Med 1972; 137:571–589.

    Article  Google Scholar 

  98. Jonsson A, Ilver D, Falk P et al. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol Microbiol 1994; 13:403–416.

    Article  PubMed  CAS  Google Scholar 

  99. Swanson J, Koomey JM. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae. In: Berg DE, Howe MM, eds. Mobile DNA. Washington, DC: 1989:743–761.

    Google Scholar 

  100. Kallstrom H, Blackmer-Gill D, Albiger B et al. Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46: identification of domains important for bacterial adherence. Cell Microbiol 2001; 3:133–143.

    Article  PubMed  CAS  Google Scholar 

  101. Kallstrom H, Islam MS, Berggren PO et al. Cell signaling by the type IV pili of pathogenic neisseria. J Biol Chem 1998; 273:21777–82.

    Article  PubMed  CAS  Google Scholar 

  102. Rothbard J, Fernandez R, Wang L et al. Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Microbiology 1985; 82:915–919.

    CAS  Google Scholar 

  103. Virji M, Heckels JE. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J Gen Microbiol 1984; 130:1089–1095.

    PubMed  CAS  Google Scholar 

  104. Tramont EC, Sadoff JC, Boslego JW et al. Gonococcal pilus vaccine: studies of antigenicity and inhibition of attachment. J Clin Invest 1981; 68:881–888.

    Article  PubMed  CAS  Google Scholar 

  105. Schoolnik GK, Tai JY, Gotschlich EC. The pilus peptide vaccine for the prevention of gonorrhea. Prog Allergy 1983; 33:314–331.

    PubMed  CAS  Google Scholar 

  106. Parge HE, Forest K, Hickey MJ et al. Structure of the fibre-forming protein pilin at 2.6A resolution. Nature 1995; 378:32–38.

    Article  PubMed  CAS  Google Scholar 

  107. Siegel M, Olsen D, Critchow C et al. Gonococcal pili: safety and immunogenicity in humans and antibody function in vitro. J Infect Dis 1982; 145:300–310.

    Article  PubMed  CAS  Google Scholar 

  108. Brinton Jr CC, Wood SW, Brown A et al. The development of a neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In: Robbins JB, Hill CM, Sadoff JC, eds. Bacterial Vaccines. New York: Thieme-Stratton Inc., 1982:140–159.

    Google Scholar 

  109. McChesney DG, Tramont EC, Boslego JW et al. Genital antibody response to a parenteral gonococcal pilus vaccine. Infect Immun 1982; 36:1006–1012.

    PubMed  CAS  Google Scholar 

  110. Boslego JW, Tramont EC, Chung RC et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 1991; 9:154–162.

    Article  PubMed  CAS  Google Scholar 

  111. Rudel T, van Putten JPM, Gibbs CP et al. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol 1992; 6:3439–3450.

    Article  PubMed  CAS  Google Scholar 

  112. Rudel T, Boxberger HJ, Meyer TF. Pilus biogenesis and epithelial cell adherence of Neisseria gonorrhoeae pilC double knock-out mutants. Mol Microbiol 1995; 17:1057–1071.

    Article  PubMed  CAS  Google Scholar 

  113. Rudel T, Scheuerpflug I, Meyer TF. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 1995; 373:357–359.

    Article  PubMed  CAS  Google Scholar 

  114. Morand P, Tattevin P, Eugene E et al. The adhesive property of the type IV pilus-associated component PilC1 of pathogenic neisseria is supported by the conformational structure of the N-terminal part of the molecule. Mol Microbiol 2001; 40:846–856.

    Article  PubMed  CAS  Google Scholar 

  115. Jonsson AB, Nyberg G, Normark S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J 1991; 10:477–488.

    PubMed  CAS  Google Scholar 

  116. Rahman M, Kallstrom H, Normark S et al. PilC of pathogenic neisseria is associated with the bacterial cell surface. Mol Microbiol 1997; 25:11–25.

    Article  PubMed  CAS  Google Scholar 

  117. Tsai WM, Larsen SH, Wilde CE. Cloning and DNA sequence of the omc gene encoding the outer membrane protein-macromolecular complex from Neisseria gonorrhoeae. Infect Immun 1989; 57:2653–9.

    PubMed  CAS  Google Scholar 

  118. Drake SL, Koomey M. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol Microbiol 1995; 18:975–986.

    Article  PubMed  CAS  Google Scholar 

  119. Corbett MJ, Black JR, Wilde CE. Antibodies to outer membrane protein - macromolecular complex (OMP-MC) are bactericidal for serum-resistant gonococci. In: Poolman J, Zanen HC, Meyer TF et al. eds. Gonococci and Meningococci. Dordrecht: Kluwer Academic Publishers, 1988:685–91.

    Chapter  Google Scholar 

  120. Thomas CE, Sparling PF. Isolation and analysis of a fur mutant of Neisseria gonorrhoeae. J Bacterid 1996; 178:4224–4232.

    CAS  Google Scholar 

  121. Schryvers AB, Stojiljkovic I. Iron acquisition systems in the pathogenic neisseria. Mol Microbiol 1999; 32:1117–1123.

    Article  PubMed  CAS  Google Scholar 

  122. Carson SD, Klebba PE, Newton SM et al. Ferric enterobactin binding and utilization by Neisseria gonorrhoeae. J Bacteriol 1999; 181:2895–901.

    PubMed  CAS  Google Scholar 

  123. Chen C-J, Elkins C, Sparling PF. Phase variation of hemoglobin utilization in Neisseria gonorrhoeae. Infect Immun 1998; 66:987–993.

    PubMed  CAS  Google Scholar 

  124. Cornelissen CN, Kelley M, Hobbs MM et al. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol Microbiol 1998; 27:611–16.

    Article  PubMed  CAS  Google Scholar 

  125. Danve B, Lissolo L, Mignon M et al. Transferrin-binding proteins isolated from Neisseria meningitidis elicit protective and bactericidal antibodies in laboratory animals. Vaccine 1993; 11:1214–1220.

    Article  PubMed  CAS  Google Scholar 

  126. Rockbi B, Mignon M, Maitre-Wilmotte G et al. Evaluation of recombinant transferrin-binding protein B variants from Neisseria meningitidis for their ability to induce cross-reactive and bactericidal antibodies against a genetically diverse collection of serogroup B strains. Infect Immun 1997; 65:55–63.

    Google Scholar 

  127. West D, Reddin K, Matheson M et al. Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect Immun 2001; 69:1561–1567.

    Article  PubMed  CAS  Google Scholar 

  128. Boulton IC, Yost M, Anderson J et al. Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infect Immun 2000; 68:6988–96.

    Article  PubMed  CAS  Google Scholar 

  129. Petterson A, Kuipers B, Pelzer M et al. Monoclonal antibodies against the 70-kilodalton iron-regulated protein of Neisseria meningitidis are bactericidal and strain specific. Infect Immun 1990; 58:3036–3041.

    CAS  Google Scholar 

  130. Carson SD, Stone BJ, Beucher M et al. Phase variation of the gonococcal siderophore receptor FetA. Mol Microbiol 2000; 36:585–593.

    Article  PubMed  CAS  Google Scholar 

  131. Anderson J, Leone P, Miller WC et al. Selection for expression of the gonococcal hemoglobin receptor during menses. J Infect Dis 2001; 184:1621–23.

    Article  PubMed  CAS  Google Scholar 

  132. Pettit RK, Martin ES, Filiatrault MJ. Alteration of gonococcal protein expression in acidic culture. Infect Immun 1996; 64:1039–1042.

    PubMed  CAS  Google Scholar 

  133. Pettit RK, Martin ES, Wagner SM et al. Phenotypic modulation of gonococcal lipooligosaccharide in acidic and alkaline culture. Infect Immun 1995; 63:2773–2775.

    PubMed  CAS  Google Scholar 

  134. Mandrell R, Smith H, Jarvis G et al. Detection and some properties of the sialyltransferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb Pathog 1993; 14:307–13.

    Article  PubMed  CAS  Google Scholar 

  135. Clark VL, Campbell LA, Palermo DA et al. Induction and repression of outer membrane proteins by anaerobic growith of Neisseria gonorrhoeae. Infect Immun 1987; 55:1359–1364.

    PubMed  CAS  Google Scholar 

  136. Clark VL, Knapp JS, Thompson S et al. Presence of antibodies to the major anaerobically induced gonococcal outer membrane protein in sera from patients with gonococcal infections. Microb Pathog 1988; 5:381–390.

    Article  PubMed  CAS  Google Scholar 

  137. Zheng H, Hassett DJ, Bean K et al. Regulation of catalase in Neisseria gonorrhoeae. Effects of oxidant stress and exposure to human neutrophils. J Clin Investig 1992; 90:1000–1006.

    Article  PubMed  CAS  Google Scholar 

  138. James JF, Swanson J. Studies on gonococcus infection. XIII. Occurence of color/opacity colonial variants in clinical cultures. Infect Immun 1978; 19:332–340.

    PubMed  CAS  Google Scholar 

  139. Crawford C, Knapp JS, Hale J et al. Asymptomatic gonorrhea in men caused by gonococci with unique nutritional requirements. Science 1977; 196:1352–1353.

    Article  PubMed  CAS  Google Scholar 

  140. Brunham RC, Plummer F, Slaney L et al. Correlation of auxotype and protein I type with expression of disease due to Neisseria gonorrhoeae. J Infect Dis 1985; 152:339–43.

    Article  PubMed  CAS  Google Scholar 

  141. Whittington WL, Holmes KK. Unique gonococcal phenotype associated with asymptomatic infection in men and with erroneous diagnosis of nongonococcal urethritis. J Infect Dis 2000; 181:1044–1048.

    Article  PubMed  CAS  Google Scholar 

  142. Ross SC, Densen P. Opsonophagocytosis of Neisseria gonorrhoeae: interaction of local and disseminated isolates with complement and neutrophils. J Infect Dis 1985; 151:33–41.

    Article  PubMed  CAS  Google Scholar 

  143. Cohen MS, Cannon JG. Human experimentation with Neisseria gonorrhoeae: progress and goals. J Infect Dis 1999; 179:S375–9.

    Article  PubMed  Google Scholar 

  144. Schmidt KA, Schneider H, Lindstrom JA et al. Experimental gonococcal urethritis and reinfection with homologous gonococci in male volunteers. Sex Transm Dis 2001; 28:555–564.

    Article  PubMed  CAS  Google Scholar 

  145. Schneider H, Griffiss JM, Boslego J et al. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med 1991; 174:1601–05.

    Article  PubMed  CAS  Google Scholar 

  146. Schmidt KA, Deal CD, Kwan M et al. Neisseria gonorrhoeae MS11mkC opacity protein expression in vitro and during human volunteer infectivity studies. Sex Transm Dis 1999; 27:278–83.

    Google Scholar 

  147. Swanson J, Robbins K, Barrera O et al. Gonococcal pilin variants in experimental gonorrhea. J Exp Med 1987; 165:1344–1357.

    Article  PubMed  CAS  Google Scholar 

  148. Seifert HS, Wright CJ, Jerse AE et al. Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J Clin Invest 1994; 93:2744–2749.

    Article  PubMed  CAS  Google Scholar 

  149. Harvey HA, Jennings MP, Campbell CA et al. Receptor-mediated endocytosis of Neisseria gonorrhoeae into primary human urethral epithelial cells: the role of the asialoglycoprotein receptor. Mol Microbiol 2001; 42:659–672.

    Article  PubMed  CAS  Google Scholar 

  150. Johannsen DB, Johnston DM, Koymen HO et al. A Neisseria gonorrhoeae immunoglobulin A1 protease mutant is infectious in the human challenge model of urethral infection. Infect Immun 1999; 67:3009–13.

    PubMed  CAS  Google Scholar 

  151. James-Holmquest AN, Swanson J, Buchanan TM et al. Differential attachment by piliated and nonpiliated Neisseria gonorrhoeae to human sperm. Infect Immun 1974; 9:897–902.

    PubMed  CAS  Google Scholar 

  152. Holmes KK, Johnson DW, Trostle HJ. An estimate of the risk of men acquiring gonorrhea by sexual contact with infected females. Am J Epidemiol 1970; 91:170–74.

    PubMed  CAS  Google Scholar 

  153. Lin JS, Donegan SP, Heeren TC et al. Transmission of Chlamydia trachomatis and Neisseria gonorrhoeae among men with urethritis and their female sex partners. J Infect Dis 1998; 178:1707–12.

    Article  PubMed  CAS  Google Scholar 

  154. Shafer WM, Qu X, Waring AJ et al. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci U S A 1998; 95:1829–1833.

    Article  PubMed  CAS  Google Scholar 

  155. Tramont EC. Inhibition of Neisseria gonorrhoeae by human genital secretions. J Clin Invest 1977; 59:117–123.

    Article  PubMed  CAS  Google Scholar 

  156. McMillan A, McNeillage G, Young H. Antibodies to Neisseria gonorrhoeae: a study of the urethral exudates of 232 men. J Infect Dis 1979; 140:89–95.

    Article  PubMed  CAS  Google Scholar 

  157. Brooks GF, Lammel CJ, Petersen BH et al. Human seminal plasma inhibition of antibody complement-mediated killing and opsonization of Neisseria gonorrhoeae and other gram-negative organisms. J Clin Invest 1981; 67:1523–1531.

    Article  PubMed  CAS  Google Scholar 

  158. Plaut AG, Gilbert JV, Artenstein MS et al. Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 1975; 190:1103–05.

    Article  PubMed  CAS  Google Scholar 

  159. Dorward D, Garon CF, Judd RC. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 1989; 171:2499–2505.

    PubMed  CAS  Google Scholar 

  160. Lorenzen DR, Dux F, Wolk U et al. Immunoglobulin A1 protease, an exoenzyme of pathogenic Neisseriae, is a potent inducer of proinflammatory cytokines. J Exp Med 1999; 190:1049–1058.

    Article  PubMed  CAS  Google Scholar 

  161. Makepeace BL, Watt PJ, Heckels JE et al. Interactions of Neisseria gonorrhoeae with mature human macrophage opacity proteins influence production of proinflammatory cytokines. Infect Immun 2001; 69:1909–1913.

    Article  PubMed  CAS  Google Scholar 

  162. Fichorova RN, Desai PJ, Gibson FC et al. Distinct proinflammatory host responses to Neisseria gonorrhoeae infection in immortalized human cervical and vaginal epithelial cells. Infect Immun 2001; 69:5840–5848.

    Article  PubMed  CAS  Google Scholar 

  163. Naumann M, Webler S, Bartsch C et al. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med 1997; 186:247–258.

    Article  PubMed  CAS  Google Scholar 

  164. McGee ZA, Clemens CM, Jensen RL et al. Local induction of tumor necrosis factor as a molecular mechanism of mucosal damage by gonococci. Microb Pathog 1992; 12:333–341.

    Article  PubMed  CAS  Google Scholar 

  165. McGee ZA, Jensen RL, Clemens CM et al. Gonococcal infection of human fallopian tube mucosa in organ culture: relationship of mucosal tissue TNF-α concentration to sloughing of ciliated cells. Sex Transm Dis 1999; 26:160–65.

    Article  PubMed  CAS  Google Scholar 

  166. Gregg CR, Melly MA, Hellerqvist CG et al. Toxic activity of purfied lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis 1981; 143:432–39.

    Article  PubMed  CAS  Google Scholar 

  167. Melly MA, McGee ZA, Rosenthal RS. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 1984; 149:378–85.

    Article  PubMed  CAS  Google Scholar 

  168. Ramsey KH, Schneider H, Cross AS et al. Inflammatory cytokines produced in response to experimental human gonorrhea. J Infect Dis 1995; 172:186–191.

    Article  PubMed  CAS  Google Scholar 

  169. Hedges SR, Sibley DA, Mayo MS et al. Cytokine and antibody responses in women infected with Neisseria gonorrhoeae: effects of concomitant infections. J Infect Dis 1998; 178:742–51.

    Article  PubMed  CAS  Google Scholar 

  170. Zenni MK, Giardina PC, Harvey HA et al. Macropinocytosis as a mechanism of entry into primary human urethral epithelial cells by Neisseria gonorrhoeae. Infect Immun 2000; 68:1696–1699.

    Article  PubMed  CAS  Google Scholar 

  171. Lin LP, Ayala J, Larson JA et al. The neisseria type 2 IgAl protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 1997; 24:1083–1084.

    Article  PubMed  CAS  Google Scholar 

  172. Beck SC, Meyer TF. IgAl protease from Neisseria gonorrhoeae inhibits TNF alpha-mediated apoptosis of human monocytic cells. FEBS Lett 2000; 472:287–92.

    Article  PubMed  CAS  Google Scholar 

  173. Zak K, Diaz JL, Jackson D et al. Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhea. J Infect Dis 1984; 149:166–174.

    Article  PubMed  CAS  Google Scholar 

  174. Ward ME, Glynn AA. Human antibody response to lipopolysaccharides from Neisseria gonorrhoeae. J Clin Path 1972; 25:56–59.

    Article  PubMed  CAS  Google Scholar 

  175. Lammel CJ, Sweet RL, Rice PA et al. Antibody-antigen specificity in the immune response to infection with Neisseria gonorrhoeae. J Infect Dis 1985; 152:990–1000.

    Article  PubMed  CAS  Google Scholar 

  176. Tapchaisri P, Sirisinha S. Serum and secretory antibody responses to Neisseria gonorrhoeae in patients with gonococcal infections. Br J Vener Dis 1976; 52:374–80.

    PubMed  CAS  Google Scholar 

  177. McMillan A, McNeillage G, Young H et al. Secretory antibody response of the cervix to infection with Neisseria gonorrhoeae. Br J Vener Dis 1979; 55:265–270.

    PubMed  CAS  Google Scholar 

  178. Hicks CB, Boslego JW, Brandt B. Evidence of serum antibodies to Neisseria gonorrhoeae before gonococcal infection. J Infect Dis 1987; 155:1276–1281.

    Article  PubMed  CAS  Google Scholar 

  179. Fohn MJ, Mietzner TA, Hubbard TW et al. Human immunoglobulin G antibody response to the major gonococcal iron-regulated protein. Infect Immun 1987; 55:3065–3069.

    PubMed  CAS  Google Scholar 

  180. Elkins C, Sparling PF. Immunobiology of Neisseria gonorrhoeae. In: Quinn TC, ed. Sexually Transmitted Diseases. New York: Raven Press, 1992:113–39.

    Google Scholar 

  181. Kearns DH, O’Reilly RJ, Lee L et al. Secretory IgA antibodies in the urethral exudate of men with uncomplicated urethritis due to Neisseria gonorrhoeae. J Infect Dis 1973; 127:99–101.

    Article  PubMed  CAS  Google Scholar 

  182. O’Reilly RJ, Lee L, Welch BG. Secretory IgA antibody responses to Neisseria gonorrhoeae in the genital secretions for infected females. J Infect Dis 1976; 133:113–125.

    Article  PubMed  Google Scholar 

  183. Tsirpouchtsidis A, Hurwitz R, Brinkmann V et al. Neisserial immunoglobulin A1 protease induces specific T-cell responses in humans. Infect Immun 2002; 70:335–344.

    Article  PubMed  CAS  Google Scholar 

  184. Simpson SD, Ho Y, Rice PA et al. T lymphocyte response to Neisseria gonorrhoeae porin in individuals with mucosal gonococcal infections. J Infect Dis 1999; 180:762–73.

    Article  PubMed  CAS  Google Scholar 

  185. Hedges SR, Mayo MS, Mestecky J et al. Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect Immun 1999; 67:3937–46.

    PubMed  CAS  Google Scholar 

  186. Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 2000; 289:1560–1563.

    Article  PubMed  CAS  Google Scholar 

  187. Islam D, Bandholtz L, Nilsson J et al. Downregulation of bacterial peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 2001; 7:180–85.

    Article  PubMed  CAS  Google Scholar 

  188. Boulton IC, Gray-Owen SD. Neisserial binding to CEACAMI arrests the activation and proliferation of CD4+T lymphocytes. Nat Immunol 2002; 3(3):229–36.

    Article  PubMed  CAS  Google Scholar 

  189. Muenzner P, Billker O, Meyer TF et al. Nuclear factor-kappa B directs carcinoembryonic antigen-related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells. J Biol Chem 2002; 277(9):7438–46.

    Article  PubMed  CAS  Google Scholar 

  190. Robertson JN. Protection by monospecific gonococcal antisera of the chicken embryo challenged with Neisseria gonorrhoeae. J Med Microbiol 1979; 12:283–89.

    Article  PubMed  CAS  Google Scholar 

  191. Arko Rj. Neisseria gonorrhoeae experimental infection of laboratory animals. Science 1972; 177:1200–1201.

    Article  PubMed  CAS  Google Scholar 

  192. Arko RJ. An imunologic model in laboratory animals for the study of Neisseria gonorrhoeae. J Infect Dis 1974; 129:451–55.

    Article  PubMed  CAS  Google Scholar 

  193. Scales RW, Kraus SJ. Development and passive transfer of immunity to gonococcal infection in guinea pigs. Infect Immun 1974; 10:1040–43.

    PubMed  CAS  Google Scholar 

  194. Arko RJ, Smith S, Chen C. Neisseria gonorrhoeae: vaginal clearance and its correlation with resistance to infection in subcutaneous chambers in orally immunized estradiol-primed mice. Vaccine 1997; 15:1344–48.

    Article  PubMed  CAS  Google Scholar 

  195. Corbeil LB, Wunderlich AC, Lyons JM et al. Specific cross-protective antigonococcal immunity in the murine genital tract. Can J Microbiol 1984; 30:482–487.

    Article  PubMed  CAS  Google Scholar 

  196. Lucas CT, Chandler F, Martin JE et al. Transfer of gonococcal urethritis from man to chimpanzee. JAMA 1971; 216:1612–1614.

    Article  PubMed  CAS  Google Scholar 

  197. Brown WJ, Lucas CT, Kuhn US. Gonorrhoea in the chimpanzee: infection with laboratory-passed gonococci and by natural transmission. Br J Vener Dis 1972; 48:177–178.

    PubMed  CAS  Google Scholar 

  198. Arko RJ, Kraus SJ, Brown WJ et al. Neisseria gonorrhoeae: effects of systemic immunization on resistance of chimpanzees to urethral infection. J Infect Dis 1974; 130:160–164.

    Article  PubMed  CAS  Google Scholar 

  199. Brown WJ, Lucas CT. Gonorrhoea in the chimpanzee: serological testing. Br J Vener Dis 1973; 49:441–445.

    PubMed  CAS  Google Scholar 

  200. Jerse AE. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect Immun 1999; 67:5699–5708.

    PubMed  CAS  Google Scholar 

  201. Plante M, Jerse AE, Hamel J et al. Intranasal immunization with gonococcal outer membrane preparations reduces the duration of vaginal colonization of mice by Neisseria gonorrhoeae. J Infect Dis 2000; 182:848–55.

    Article  PubMed  CAS  Google Scholar 

  202. Wetzler LM, Blake M, Barry K et al. Gonococcal porin vaccine evaluation: comparison of Por proteosomes, liposomes, and blebs isolated from rmp deletion mutants. J Infect Dis 1992; 166:551–55.

    Article  PubMed  CAS  Google Scholar 

  203. van der Ley P, van der Biezen J, Poolman J. Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine 1995; 13:401–07.

    Article  PubMed  CAS  Google Scholar 

  204. Peeters M, Rumke HC, Sundermann LC et al. Phase 1 clinical trial with a hexavalent PorA containing meningococcal outer membrane vesicle vaccine. Vaccine 1996; 14:1009–1015.

    Article  PubMed  CAS  Google Scholar 

  205. Heckels JE, Virji M, Tinsley CR. Vaccination against gonorrhea: the potential protective effect of immunization with synthetic peptides containing epitopes of gonococcal outer-membrane protein IB. Vaccine 1990; 8:225–230.

    Article  PubMed  CAS  Google Scholar 

  206. Hoogerhout P, Donders EM, van Gaans van den Brink JA et al. Conjugates of synthetic cyclic peptides elicit bactericidal antibodies against a conformational epitope on a class 1 outer membrane protein of Neisseria meningitidis. Infect Immun 1995; 63:3473–3478.

    PubMed  CAS  Google Scholar 

  207. Virji M, Zak K, Heckels JE. Outer membrane protein III of Neisseria gonorrhoeae: variations in biological properties of antibodies directed against different epitopes. J Gen Microbiol 1987; 133:3393–3401.

    PubMed  CAS  Google Scholar 

  208. Martin D, Cadieux N, Hamel J et al. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 1997; 185:1173–1183.

    Article  PubMed  CAS  Google Scholar 

  209. Chamberlain LM, Strugnell R, Dougan G et al. Neisseria gonorrhoeae strain MS11 harbouring a mutation in gene aroA is attenuated and immunogenic. Microb Pathog 1993; 15:51–63.

    Article  PubMed  CAS  Google Scholar 

  210. Ellis C, Lindner B, Khan MA et al. The Neisseria gonorrhoeae IpxLII gene encodes for a late-functioning lauroyl acyl transferase, and a null mutation within the gene has a significant effect on the induction of acute inflammatory responses. Mol Microbiol 2001; 42:167–181.

    Article  PubMed  CAS  Google Scholar 

  211. Saunders NB, Shoemaker DR, Brandt BL et al. Immunogenicity of intranasally administered meningococcal native outer membrane vesicles in mice. Infect Immun 1999; 67:113–119.

    PubMed  CAS  Google Scholar 

  212. Hajishengallis G, Hollingshead SK, Koga T et al. Mucosal immunization with a bacterial protein antigen genetically coupled to cholera toxin A2/B subunits. J Immunol 1995; 154:4322–4332.

    PubMed  CAS  Google Scholar 

  213. George-Chandy A, Eriksson K, Lebens M et al. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells. Infect Immun 2001; 69:5716–5725.

    Article  PubMed  CAS  Google Scholar 

  214. Daynes R, Enioutina E, Butler S et al. Induction of common mucosal immunity by hormonally immunomodulated peripheral immunization. Infect Immun 1996; 64:1100–1109.

    PubMed  CAS  Google Scholar 

  215. Enioutina E, Visic D, McGee ZA et al. The induction of systemic and mucosal immune responses following the subcutaneous immunization of mature adult mice: characterization of the antibodies in mucosal secretions of animals immunized with antigen formulations containing a vitamin D3 adjuvant. Vaccine 1999; 17:3050–3064.

    Article  PubMed  CAS  Google Scholar 

  216. Enioutina E, Visic D, Daynes R. The induction of systemic and mucosal immune response to antigen-adjuvant compositions administered into the skin: alterations in the migratory properties of dendritic cells appears to be important for stimulating mucosal immunity. Vaccine 2000; 18:2753–2767.

    Article  PubMed  CAS  Google Scholar 

  217. Davis N, Powell N, Greenwald GF et al. Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology 1991; 183:20–31.

    Article  PubMed  CAS  Google Scholar 

  218. Davis N, Brown K, Johnston R. A viral vaccine vector that expresses foreign gene in lymph nodes and protects against mucosal challenge. J Virol 1996; 70:3781–3787.

    PubMed  CAS  Google Scholar 

  219. Amara RR, Villinger F, Altman J et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001; 292:69–74.

    Article  PubMed  CAS  Google Scholar 

  220. Bosarge JR, Watt JM, McDaniel DO et al. Genetic immunization with the region encoding the α-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect Immun 2001; 69:5456–5463.

    Article  PubMed  CAS  Google Scholar 

  221. Huang Y, Hajishengallis G, Michalek SM. Induction of protective immunity against Streptococcus mutans colonization after mucosal immunization with attenuated Salmonella enterica serovar typhimurium expressing and S. mutans adhesin under the control of in vivo-inducible nirB promoter. Infect Immun 2001; 69:2154–2161.

    Article  PubMed  CAS  Google Scholar 

  222. Wang J, Michel V, Leclerc C et al. Immunogenicity of viral B-cell epitopes inserted into two surface loops of the Escherichia coli K12 LamB protein and expressed in an attenuated aroA strain of Salmonella typhimurium. Vaccine 1999; 17:1–12.

    Article  PubMed  Google Scholar 

  223. Klemm P, Schembri MA. Fimbrial surface display systems in bacteria: from vaccines to random libraries. Microbiology 2000; 146:3025–3032.

    PubMed  CAS  Google Scholar 

  224. Gandon S, MacKinnon MJ, Nee S et al. Imperfect vaccines and the evolution of pathogen virulence. Nature 2001; 414:751–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sparling, P.F., Thomas, C.E., Zhu, W. (2003). A Vaccine for Gonorrhea. In: New Bacterial Vaccines. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0053-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0053-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4902-0

  • Online ISBN: 978-1-4615-0053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics