Skip to main content

Pharmacogenomics and Cancer Therapy: Somatic and Germline Polymorphisms

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 3746 Accesses

Abstract

Pharmacogenomics has the potential to not only impact the pharmacokinetics of an anticancer drug but also the tumor response, or pharmacodynamics. This chapter focuses on the most up-to-date clinical trials involving pharmacogenomics and anticancer therapy. A brief introduction of drug development and the difference between somatic and germline DNA mutations sets up the chapter for understanding the progress which has been made in regard to individualized cancer therapy. Although researchers and healthcare practitioners have realized the potential of pharmacogenomics for several years, it has only been until recently that genotype-guided, prospective clinical trials have been done. Validating these biomarkers and genetic associations is vital to translating pharmacogenomics into clinical practice. This chapter highlights the advancements that have been made with key examples such as tamoxifen and CYP2D6, erlotinib and EGFR, vemurafenib and BRAF, and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watters JW, McLeod HL (2003) Cancer pharmacogenomics: current and future applications. Biochim Biophys Acta 1603(2):99–111

    CAS  PubMed  Google Scholar 

  2. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491

    Article  CAS  PubMed  Google Scholar 

  3. Berry DA (2011) Adaptive clinical trials in oncology. Nat Rev Clin Oncol 9(4):199–207

    Article  PubMed  Google Scholar 

  4. Tan DS, Thomas GV, Garrett MD, Banerji U, de Bono JS, Kaye SB et al (2009) Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J 15(5):406–420

    Article  CAS  PubMed  Google Scholar 

  5. Deverka PA, Vernon J, McLeod HL (2010) Economic opportunities and challenges for pharmacogenomics. Annu Rev Pharmacol Toxicol 50:423–437

    Article  CAS  PubMed  Google Scholar 

  6. Lee W, Lockhart AC, Kim RB, Rothenberg ML (2005) Cancer pharmacogenomics: powerful tools in cancer chemotherapy and drug development. Oncologist 10(2):104–111

    Article  CAS  PubMed  Google Scholar 

  7. Lesko LJ, Salerno RA, Spear BB, Anderson DC, Anderson T, Brazell C et al (2003) Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-DruSafe Workshop. J Clin Pharmacol 43(4):342–358

    Article  CAS  PubMed  Google Scholar 

  8. Deenen MJ, Cats A, Beijnen JH, Schellens JH (2011) Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 16(6):811–819

    Article  CAS  PubMed  Google Scholar 

  9. Marsh S, McKay JA, Cassidy J, McLeod HL (2001) Polymorphism in the thymidylate synthase promoter enhancer region in colorectal cancer. Int J Oncol 19(2):383–386

    CAS  PubMed  Google Scholar 

  10. McWhinney SR, McLeod HL (2009) Using germline genotype in cancer pharmacogenetic studies. Pharmacogenomics 10(3):489–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lash TL, Lien EA, Sorensen HT, Hamilton-Dutoit S (2009) Genotype-guided tamoxifen therapy: time to pause for reflection? Lancet Oncol 10(8):825–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC et al (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232–3239

    Article  CAS  PubMed  Google Scholar 

  13. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243

    Article  CAS  PubMed  Google Scholar 

  14. Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89(5):718–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R et al (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1–98 trial. J Natl Cancer Inst 104(6):441–451

    Google Scholar 

  16. Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP et al (2012) CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 104(6):452–460

    Google Scholar 

  17. Perera MA, Innocenti F, Ratain MJ (2008) Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 28(6):755–768

    Article  CAS  PubMed  Google Scholar 

  18. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 99(17):1290–1295

    Article  CAS  PubMed  Google Scholar 

  19. Marcuello E, Paez D, Pare L, Salazar J, Sebio A, Del Rio E et al (2011) A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer 105(1):53–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M et al (2005) Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293(12):1485–1489

    Article  CAS  PubMed  Google Scholar 

  21. Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008

    Article  CAS  PubMed  Google Scholar 

  22. Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kawakami K, Graziano F, Watanabe G, Ruzzo A, Santini D, Catalano V et al (2005) Prognostic role of thymidylate synthase polymorphisms in gastric cancer patients treated with surgery and adjuvant chemotherapy. Clin Cancer Res 11(10):3778–3783

    Article  CAS  PubMed  Google Scholar 

  24. Villafranca E, Okruzhnov Y, Dominguez MA, Garcia-Foncillas J, Azinovic I, Martinez E et al (2001) Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol 19(6):1779–1786

    CAS  PubMed  Google Scholar 

  25. Tan BR, Thomas F, Myerson RJ, Zehnbauer B, Trinkaus K, Malyapa RS et al (2011) Thymidylate synthase genotype-directed neoadjuvant chemoradiation for patients with rectal adenocarcinoma. J Clin Oncol 29(7):875–883

    Article  CAS  PubMed  Google Scholar 

  26. De Mattia E, Toffoli G (2009) C677T and A1298C MTHFR polymorphisms, a challenge for antifolate and fluoropyrimidine-based therapy personalisation. Eur J Cancer 45(8):1333–1351

    Article  PubMed  Google Scholar 

  27. Lu JW, Gao CM, Wu JZ, Sun XF, Wang L, Feng JF (2004) [Relationship of methylenetetrahydrofolate reductase C677T polymorphism and chemosensitivity to 5-fluorouracil in gastric carcinoma]. Ai Zheng 23(8):958–962

    CAS  PubMed  Google Scholar 

  28. Shitara K, Muro K, Ito S, Sawaki A, Tajika M, Kawai H et al (2010) Folate intake along with genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase in patients with advanced gastric cancer. Cancer Epidemiol Biomarkers Prev 19(5):1311–1319

    Article  CAS  PubMed  Google Scholar 

  29. Toffoli G, Cecchin E (2007) Pharmacogenetics and stomach cancer: an update. Pharmacogenomics 8(5):497–505

    Article  CAS  PubMed  Google Scholar 

  30. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH (2002) High prevalence of the IVS14 + 1G>A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 12(7):555–558

    Article  PubMed  Google Scholar 

  31. Kristensen MH, Pedersen PL, Melsen GV, Ellehauge J, Mejer J (2010) Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J Int Med Res 38(3):870–883

    Article  CAS  PubMed  Google Scholar 

  32. Gemmati D, Ongaro A, Tognazzo S, Catozzi L, Federici F, Mauro E et al (2007) Methylenetetrahydrofolate reductase C677T and A1298C gene variants in adult non-Hodgkin’s lymphoma patients: association with toxicity and survival. Haematologica 92(4):478–485

    Article  CAS  PubMed  Google Scholar 

  33. Salazar J, Altes A, Del Rio E, Estella J, Rives S, Tasso M et al (2012) Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J 12(5):379–385

    Article  CAS  PubMed  Google Scholar 

  34. Goekkurt E, Hoehn S, Wolschke C, Wittmer C, Stueber C, Hossfeld DK et al (2006) Polymorphisms of glutathione S-transferases (GST) and thymidylate synthase (TS) – novel predictors for response and survival in gastric cancer patients. Br J Cancer 94(2):281–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ruzzo A, Graziano F, Kawakami K, Watanabe G, Santini D, Catalano V et al (2006) Pharmacogenetic profiling and clinical outcome of patients with advanced gastric cancer treated with palliative chemotherapy. J Clin Oncol 24(12):1883–1891

    Article  CAS  PubMed  Google Scholar 

  36. Ott K, Lordick F, Becker K, Ulm K, Siewert J, Hofler H et al (2008) Glutathione-S-transferase P1, T1 and M1 genetic polymorphisms in neoadjuvant-treated locally advanced gastric cancer: GSTM1-present genotype is associated with better prognosis in completely resected patients. Int J Colorectal Dis 23(8):773–782

    Article  PubMed  Google Scholar 

  37. Bradbury PA, Kulke MH, Heist RS, Zhou W, Ma C, Xu W et al (2009) Cisplatin pharmacogenetics, DNA repair polymorphisms, and esophageal cancer outcomes. Pharmacogenet Genomics 19(8):613–625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Goekkurt E, Al-Batran SE, Hartmann JT, Mogck U, Schuch G, Kramer M et al (2009) Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the arbeitsgemeinschaft internistische onkologie. J Clin Oncol 27(17):2863–2873

    Article  CAS  PubMed  Google Scholar 

  39. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mitsudomi T (2011) Erlotinib, gefitinib, or chemotherapy for EGFR mutation-positive lung cancer? Lancet Oncol 12(8):710–711

    Article  PubMed  Google Scholar 

  42. Won YW, Han JY, Lee GK, Park SY, Lim KY, Yoon KA et al (2011) Comparison of clinical outcome of patients with non-small-cell lung cancer harbouring epidermal growth factor receptor exon 19 or exon 21 mutations. J Clin Pathol 64(11):947–952

    Article  CAS  PubMed  Google Scholar 

  43. Rosell R, Molina MA, Costa C, Simonetti S, Gimenez-Capitan A, Bertran-Alamillo J et al (2011) Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. Clin Cancer Res 17(5):1160–1168

    Article  CAS  PubMed  Google Scholar 

  44. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12(8):735–742

    Article  CAS  PubMed  Google Scholar 

  45. Siddiqui AD, Piperdi B (2010) KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol 17(4):1168–1176

    Article  PubMed Central  PubMed  Google Scholar 

  46. Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019

    Article  PubMed  Google Scholar 

  47. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26(35):5705–5712

    Article  PubMed  Google Scholar 

  48. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10(12):1179–1187

    Article  CAS  PubMed  Google Scholar 

  49. Untch M, Rezai M, Loibl S, Fasching PA, Huober J, Tesch H et al (2010) Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study. J Clin Oncol 28(12):2024–2031

    Article  CAS  PubMed  Google Scholar 

  50. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697

    Article  CAS  PubMed  Google Scholar 

  51. Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109

    CAS  PubMed  Google Scholar 

  52. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 315(6022):758–761

    Article  CAS  PubMed  Google Scholar 

  53. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817

    Article  CAS  PubMed  Google Scholar 

  54. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037

    Article  CAS  PubMed  Google Scholar 

  55. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  CAS  PubMed  Google Scholar 

  56. Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y et al (2011) Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol 29(21):2904–2909

    Article  CAS  PubMed  Google Scholar 

  57. Frueh FW, Amur S, Mummaneni P, Epstein RS, Aubert RE, DeLuca TM et al (2008) Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy 28(8):992–998

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard L. McLeod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Patel, J.N., McLeod, H.L. (2014). Pharmacogenomics and Cancer Therapy: Somatic and Germline Polymorphisms. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics