Skip to main content

Regulation of Proteolysis in Vascular Remodeling

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1265 Accesses

Abstract

The extracellular matrix (ECM) is the scaffolding on which cells adhere and is comprised of fibrous proteins (such as collagens and elastin), proteoglycans, and water. Matrix–cell adhesion provides essential cell survival cues and the matrix sequesters various growth factors that can regulate the behavior of adjacent cells. However, the matrix, and in particular, the basement membrane, presents a confining barrier that limits vascular cell movement. Thus, reorganization of the ECM is an essential step in vascular remodeling processes. ECM proteolysis allows for sprouting angiogenesis and arteriogenesis in response to physiological stimuli, such as increased blood flow or increased metabolic activity. However, unregulated extracellular matrix degradation is associated with vascular diseases such as diabetic retinopathy, tumor angiogenesis, and thrombosis. In this review, we describe the structure and function of the major matrix protease families secreted by endothelial cells: the matrix metalloproteinases (MMPs) and plasminogen activator (PA)/plasmin system. We also discuss the function and regulation of the endogenous protease inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), and the plasminogen activator inhibitors (PAIs). The equilibrium between proteases and inhibitors plays an integral role in establishing the maintenance and structural remodeling of the vasculature. We review the regulation of these proteases and their inhibitors in vascular cells, particularly in response to altered shear stress. The specific involvement of members of the MMP/TIMP system and the PA/plasmin/PAI system proteases in vascular remodeling of capillaries (angiogenesis) and arteries (arteriogenesis) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy G, Knäper V. (1997) Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol 15: 511-518

    Article  PubMed  CAS  Google Scholar 

  2. Visse R, Nagase H. (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92: 827-839

    Article  PubMed  CAS  Google Scholar 

  3. Van Wart HE, Birkedal-Hansen H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87: 5578-5582

    Article  PubMed  Google Scholar 

  4. Bode W, Gomis-Rüth FX, Stöckler W. (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331: 134-140

    Article  PubMed  CAS  Google Scholar 

  5. Nagase H, Enghild JJ, Suzuki K et al. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29: 5783-5789

    Article  PubMed  CAS  Google Scholar 

  6. Butler GS, Butler MJ, Atkinson SJ et al. (1998) The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273: 871-880

    Article  PubMed  CAS  Google Scholar 

  7. Spinale FG. (2007) Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87: 1285-1342

    Article  PubMed  CAS  Google Scholar 

  8. Kandasamy AD, Chow AK, Ali MAM et al. (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85: 413-423

    Article  PubMed  CAS  Google Scholar 

  9. Cornelius LA, Nehring LC, Harding E et al. (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J immunol 161: 6845-6852

    PubMed  CAS  Google Scholar 

  10. Wen W, Moses MA, Wiederschain D et al. (1999) The generation of endostatin is mediated by elastase. Cancer Res 59: 6052-6056

    PubMed  CAS  Google Scholar 

  11. O’Reilly MS. (1999) Regulation of Angiostatin Production by Matrix Metalloproteinase-2 in a Model of Concomitant Resistance. J Biol Chem 274: 29568-29571

    Article  PubMed  Google Scholar 

  12. Fukuda H, Mochizuki S, Abe H et al. (2011) Host-derived MMP-13 exhibits a protective role in lung metastasis of melanoma cells by local endostatin production. Br J Cancer 105: 1615-1624

    Article  PubMed  CAS  Google Scholar 

  13. Chung AWY, Hsiang YN, Matzke LA et al. (2006) Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res 99: 140-148

    Article  PubMed  CAS  Google Scholar 

  14. Chung AWY, Yang HHC, Sigrist MK et al. (2009) Matrix metalloproteinase-2 and -9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res 84: 494-504

    Article  PubMed  CAS  Google Scholar 

  15. Hawinkels LJAC, Kuiper P, Wiercinska E et al. (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70: 4141-4150

    Article  PubMed  CAS  Google Scholar 

  16. Beauchamp A, Lively MO, Mintz A et al. (2012) EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol Cell Biol 32: 3253-3264

    Article  PubMed  CAS  Google Scholar 

  17. Blackburn JS, Brinckerhoff CE. (2008) Matrix metalloproteinase-1 and thrombin differentially activate gene expression in endothelial cells via PAR-1 and promote angiogenesis. Am J Path 173: 1736-1746

    Article  PubMed  CAS  Google Scholar 

  18. Jaffré F, Friedman AE, Hu Z et al. (2012) β-adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation 125: 2993-3003

    Article  PubMed  CAS  Google Scholar 

  19. Hofmann UB, Westphal JR, van Muijen GNP et al. (2000) Matrix metalloproteinases in human melanoma. J Invest Dermatol 115: 337-344

    Article  PubMed  CAS  Google Scholar 

  20. Nagase H, Woessner JF. (1999) Matrix metalloproteinases. J Biol Chem 274: 21491-21494

    Article  PubMed  CAS  Google Scholar 

  21. Angel P, Baumann I, Stein B et al. (1987) 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol Cell Biol 7: 2256-2266

    PubMed  CAS  Google Scholar 

  22. Haas TL, Stitelman D, Davis SJ et al. (1999) Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J Biol Chem 274: 22679-22685

    Article  PubMed  CAS  Google Scholar 

  23. Han X, Boyd PJ, Colgan S et al. (2003) Transcriptional up-regulation of endothelial cell matrix metalloproteinase-2 in response to extracellular cues involves GATA-2. J Biol Chem 278: 47785-47791

    Article  PubMed  CAS  Google Scholar 

  24. He C. (1996) Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett 106: 185-191

    Article  PubMed  CAS  Google Scholar 

  25. Lohi J, Lehti K, Valtanen H et al. (2000) Structural analysis and promoter characterization of the human membrane-type matrix metalloproteinase-1 (MT1-MMP) gene. Gene 242: 75-86

    Article  PubMed  CAS  Google Scholar 

  26. Xie TX, Wei D, Liu M et al. (2004) Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23: 3550-3560

    Article  PubMed  CAS  Google Scholar 

  27. Haas TL, Davis SJ, Madri JA. (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273: 3604-3610

    Article  PubMed  CAS  Google Scholar 

  28. Ailenberg M, Silverman M. (2002) Trichostatin A-histone deacetylase inhibitor with clinical therapeutic potential-is also a selective and potent inhibitor of gelatinase A expression. Biochem Biophys Res Commun 298: 110-115

    Article  PubMed  CAS  Google Scholar 

  29. Chicoine E, Estève PO, Robledo O et al. (2002) Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem Biophys Res Commun 297: 765-772

    Article  PubMed  CAS  Google Scholar 

  30. Taraboletti G, Sonzogni L, Vergani V et al. (2000) Posttranscriptional stimulation of endothelial cell matrix metalloproteinases 2 and 1 by endothelioma cells. Exp Cell Res 258: 384-394

    Article  PubMed  CAS  Google Scholar 

  31. Taraboletti G, D’Ascenzo S, Borsotti P et al. (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160: 673-680

    Article  PubMed  CAS  Google Scholar 

  32. Ispanovic E, Serio D, Haas TL. (2008) Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. Am J Physiol 295: C600-C610

    Article  CAS  Google Scholar 

  33. Nguyen M, Arkell J, Jackson CJ. (1998) Active and tissue inhibitor of matrix metalloproteinase-free gelatinase B accumulates within human microvascular endothelial vesicles. J Biol Chem 273: 5400-5404

    Article  PubMed  CAS  Google Scholar 

  34. Schnaeker EM, Ossig R, Ludwig T et al. (2004) Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: Prerequisite in human melanoma cell invasion. Cancer Res 64: 8924-8931

    Article  PubMed  CAS  Google Scholar 

  35. Remacle AG, Rozanov DV, Baciu PC et al. (2005) The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci 118: 4975-4984

    Article  PubMed  CAS  Google Scholar 

  36. Crocker SJ, Pagenstecher A, Campbell IL. (2004) The TIMPs tango with MMPs and more in the central nervous system. J Neurosci Res 75: 1-11

    Article  PubMed  CAS  Google Scholar 

  37. Leco KJ, Apte SS, Taniguchi GT et al. (1997) Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett 401: 213-217

    Article  PubMed  CAS  Google Scholar 

  38. Blavier L, Henriet P, Imren S et al. (1999) Tissue inhibitors of matrix metalloproteinases in cancer. Ann NY Acad Sci 878: 108-119

    Article  PubMed  CAS  Google Scholar 

  39. Murphy G, Willenbrock F. (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248: 496-510

    Article  PubMed  CAS  Google Scholar 

  40. Lambert E, Dasse E, Haye B et al. (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49: 187-198

    Article  PubMed  Google Scholar 

  41. Strongin AY, Collier I, Bannikov G et al. (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331-5338

    Article  PubMed  CAS  Google Scholar 

  42. Bigg HF, Morrison CJ, Butler GS et al. (2001) Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type I-matrix metalloproteinase. Cancer Res 61: 3610-3618

    PubMed  CAS  Google Scholar 

  43. Butler GS, Apte SS, Willenbrock F et al. (1999) Human tissue inhibitor of metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B - Regulation by polyanions. J Biol Chem 274: 10846-10851

    Article  PubMed  CAS  Google Scholar 

  44. Howard EW, Banda MJ. (1991) Binding of Tissue Inhibitor of Metalloproteinases-2 to 2 Distinct Sites on Human 72-Kda Gelatinase - Identification of A Stabilization Site. J Biol Chem 266: 17972-17977

    PubMed  CAS  Google Scholar 

  45. Fernandez-Catalan C, Bode W, Huber R et al. (1998) Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J 17: 5238-5248

    Article  PubMed  CAS  Google Scholar 

  46. Tuuttila A, Morgunova E, Bergmann U et al. (1998) Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 angstrom resolution. J Mol Biol 284: 1133-1140

    Article  PubMed  CAS  Google Scholar 

  47. Murphy G. (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12: 233

    Article  PubMed  CAS  Google Scholar 

  48. Aicher WK, Alexander D, Haas C et al. (2003) Transcription factor early growth response 1 activity up-regulates expression of tissue inhibitor of metalloproteinases 1 in human synovial fibroblasts. Arthritis Rheum 48: 348-359

    Article  PubMed  CAS  Google Scholar 

  49. Bachmeier BE, Vené R, Iancu CM et al. (2005) Transcriptional control of cell density dependent regulation of matrix metalloproteinase and TIMP expression in breast cancer cell lines. Thrombosis Haemost 93: 761-769

    CAS  Google Scholar 

  50. Botelho FM, Edwards DR, Richards CD. (1998) Oncostatin M stimulates c-Fos to bind a transcriptionally responsive AP-1 element within the tissue inhibitor of metalloproteinase-1 promoter. J Biol Chem 273: 5211-5218

    Article  PubMed  CAS  Google Scholar 

  51. el A, Doller A, Muller R et al. (2005) Nitric oxide induces TIMP-1 expression by activating the transforming growth factor beta-Smad signaling pathway. J Biol Chem 280: 39403-39416

    Google Scholar 

  52. Logan SK, Garabedian MJ, Campbell CE et al. (1996) Synergistic transcriptional activation of the tissue inhibitor of metalloproteinases-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors 1. J Biol Chem 271: 774-782

    Article  PubMed  CAS  Google Scholar 

  53. Sohara N, Trojanowska M, Reuben A. (2002) Oncostatin M stimulates tissue inhibitor of metalloproteinase-1 via a MEK-sensitive mechanism in human myofibroblasts. J Hepatol 36: 191-199

    Article  PubMed  CAS  Google Scholar 

  54. Hall MC, Young DA, Waters JG et al. (2003) The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem 278: 10304-10313

    Article  PubMed  CAS  Google Scholar 

  55. Milkiewicz M, Uchida C, Gee E et al. (2008) Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell Physiol 217: 502-510

    Article  PubMed  CAS  Google Scholar 

  56. Chirco R, Liu XW, Jung KK et al. (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25: 99-113

    Article  PubMed  CAS  Google Scholar 

  57. Lambert E, Bridoux L, Devy JÃ et al. (2009) TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival. Int J Biochem Cell Biol 41: 1102-1115

    Article  PubMed  CAS  Google Scholar 

  58. Li G, Fridman R, Kim HR. (1999) Tissue inhibitor of metalloproteinase-1 inhibits apoptosis of human breast epithelial cells. Cancer Res 59: 6267-6275

    PubMed  CAS  Google Scholar 

  59. Qi JH, Ebrahem Q, Moore N et al. (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9: 407-415

    Article  PubMed  CAS  Google Scholar 

  60. Seo DW, Li H, Guedez L et al. (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114: 171-180

    Article  PubMed  CAS  Google Scholar 

  61. Guedez L, Courtemanch L, Stetler-Stevenson M. (1998) Tissue inhibitor of metalloproteinase (TIMP)-1 induces differentiation and an antiapoptotic phenotype in germinal center B cells. Blood 92: 1342-1349

    PubMed  CAS  Google Scholar 

  62. Murphy FR, Issa R, Zhou X et al. (2002) Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 277: 11069-11076

    Article  PubMed  CAS  Google Scholar 

  63. Tsagaraki I, Tsilibary EC, Tzinia AK. (2010) TIMP-1 interaction with avb3 integrin confers resistance to human osteosarcoma cell line MG-63 against TNF-a-induced apoptosis. Cell Tissue Res 342: 87-96

    Article  PubMed  CAS  Google Scholar 

  64. Barasch J, Yang J, Qiao J et al. (1999) Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros. J Clin Invest 103: 1299-1307

    Article  PubMed  CAS  Google Scholar 

  65. Hayakawa T, Yamashita K, Tanzawa K et al. (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 298: 29-32

    Article  PubMed  CAS  Google Scholar 

  66. Murate T, Yamashita K, Isogai C et al. (1997) The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br J Haematol 99: 181-189

    Article  PubMed  CAS  Google Scholar 

  67. Taube ME, Liu XW, Fridman R et al. (2006) TIMP-1 regulation of cell cycle in human breast epithelial cells via stabilization of p27(KIP1) protein. Oncogene 25: 3041-3048

    Article  PubMed  CAS  Google Scholar 

  68. Smith MR, Kung H, Durum SK et al. (1997) TIMP-3 induces cell death by stabilizing TNF-alpha receptors on the surface of human colon carcinoma cells. Cytokine 9: 770-780

    Article  PubMed  CAS  Google Scholar 

  69. Liotta LA, Goldfarb RH, Brundage R et al. (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 41: 4629-4636

    PubMed  CAS  Google Scholar 

  70. Gechtman Z, Sharma R, Kreizman T et al. (1993) Synthetic peptides derived from the sequence around the plasmin cleavage site in vitronectin. Use in mapping the PAI-1 binding site. FEBS Lett 315: 293-297

    Article  PubMed  CAS  Google Scholar 

  71. Fuchs H, Simon MM, Wallich R et al. (1996) Borrelia burgdorferi induces secretion of pro-urokinase-type plasminogen activator by human monocytes. Infect Immun 64: 4307-4312

    PubMed  CAS  Google Scholar 

  72. Robbins KC, Summaria L, Hsieh B et al. (1967) The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J Biol Chem 242: 2333-2342

    PubMed  CAS  Google Scholar 

  73. Andreasen PA, Egelund R, Petersen HH. (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57: 25-40

    Article  PubMed  CAS  Google Scholar 

  74. Croucher DR, Saunders DN, Lobov S et al. (2008) Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 8: 535-545

    Article  PubMed  CAS  Google Scholar 

  75. Pepper MS. (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104-1117

    Article  PubMed  CAS  Google Scholar 

  76. Deryugina EI, Quigley JP. (2012) Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol 2012: 564259

    Article  PubMed  CAS  Google Scholar 

  77. Vassalli JD, Sappino AP, Belin D. (1991) The plasminogen activator/plasmin system. J Clin Invest 88: 1067-1072

    Article  PubMed  CAS  Google Scholar 

  78. Ploug M, Rønne E, Behrendt N et al. (1991) Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem 266: 1926-1933

    PubMed  CAS  Google Scholar 

  79. Estreicher A, Mühlhauser J, Carpentier JL et al. (1990) The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 111: 783-792

    Article  PubMed  CAS  Google Scholar 

  80. Kruithof EK, Baker MS, Bunn CL. (1995) Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood 86: 4007-4024

    PubMed  CAS  Google Scholar 

  81. Binder BR, Christ GÃ, Gruber F et al. (2002) Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 17: 56-61

    PubMed  CAS  Google Scholar 

  82. Thorsen S, Philips M, Selmer J et al. (1988) Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur J Biochem 175: 33-39

    Article  PubMed  CAS  Google Scholar 

  83. Czekay RP, Kuemmel TA, Orlando RA et al. (2001) Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell 12: 1467-1479

    Article  PubMed  CAS  Google Scholar 

  84. Webb DJ, Thomas KS, Gonias SL. (2001) Plasminogen activator inhibitor 1 functions as a urokinase response modifier at the level of cell signaling and thereby promotes MCF-7 cell growth. J Cell Biol 152: 741-752

    Article  PubMed  CAS  Google Scholar 

  85. Loskutoff DJ, Curriden S, Hu G et al. (1999) Regulation of cell adhesion by PAI-1. APMIS 107: 54-61

    Article  PubMed  CAS  Google Scholar 

  86. Lawrence DA, Berkenpas MB, Palaniappan S et al. (1994) Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J Biol Chem 269: 15223-15228

    PubMed  CAS  Google Scholar 

  87. Miles LA, Dahlberg CM, Plescia J et al. (1991) Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30: 1682-1691

    Article  PubMed  CAS  Google Scholar 

  88. Miles LA, Lighvani S, Baik N et al. (2012) The plasminogen receptor, Plg-R(KT), and macrophage function. J Biomed Biotechnol 2012: 250464

    PubMed  Google Scholar 

  89. Plow EF, Freaney DE, Plescia J et al. (1986) The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol 103: 2411-2420

    Article  PubMed  CAS  Google Scholar 

  90. Plow EF, Das R. (2009) Enolase-1 as a plasminogen receptor. Blood 113: 5371-5372

    Article  PubMed  CAS  Google Scholar 

  91. Plow EF, Doeuvre L, Das R. (2012) So many plasminogen receptors: why? J Biomed Biotechnol 2012: 141806

    Article  PubMed  CAS  Google Scholar 

  92. Andronicos NM, Chen EI, Baik N et al. (2010) Proteomics-based discovery of a novel, structurally unique, and developmentally regulated plasminogen receptor, Plg-RKT, a major regulator of cell surface plasminogen activation. Blood 115: 1319-1330

    Article  PubMed  CAS  Google Scholar 

  93. Lighvani S, Baik N, Diggs JE et al. (2011) Regulation of macrophage migration by a novel plasminogen receptor Plg-R KT. Blood 118: 5622-5630

    Article  PubMed  CAS  Google Scholar 

  94. Lyons RM, Keski-Oja J, Moses HL. (1988) Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 106: 1659-1665

    Article  PubMed  CAS  Google Scholar 

  95. Saksela O, Rifkin DB. (1990) Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 110: 767-775

    Article  PubMed  CAS  Google Scholar 

  96. Hattori N, Mizuno S, Yoshida Y et al. (2004) The plasminogen activation system reduces fibrosis in the lung by a hepatocyte growth factor-dependent mechanism. Am J Path 164: 1091-1098

    Article  PubMed  CAS  Google Scholar 

  97. George SJ, Johnson JL, Smith MA et al. (2001) Plasmin-mediated fibroblast growth factor-2 mobilisation supports smooth muscle cell proliferation in human saphenous vein. J Vasc Res 38: 492-501

    Article  PubMed  CAS  Google Scholar 

  98. Murphy G, Atkinson S, Ward R et al. (1992) The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann NY Acad Sci 667: 1-12

    Article  PubMed  CAS  Google Scholar 

  99. Werb Z. (1997) ECM and cell surface proteolysis: regulating cellular ecology. Cell 91: 439-442

    Article  PubMed  CAS  Google Scholar 

  100. Paschos KA, Canovas D, Bird NC. (2009) Enzymatic function of multiple origins regulates the progression of colorectal cancer and the development of metastases. Hippokratia 13: 23-31

    PubMed  CAS  Google Scholar 

  101. Smith HW, Marshall CJ. (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11: 23-36

    Article  PubMed  CAS  Google Scholar 

  102. Deng G, Curriden S, Wang S et al. (1996) Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J Cell Biol 134: 1563-1571

    Article  PubMed  CAS  Google Scholar 

  103. Stefansson S, Lawrence DA. (1996) The serpin PAI-1 inhibits cell migration by blocking integrin alphavbeta3 binding to vitronectin. Nature 383: 441-443

    Article  PubMed  CAS  Google Scholar 

  104. Chen Y, Kelm RJ, Budd RC et al. (2004) Inhibition of apoptosis and caspase-3 in vascular smooth muscle cells by plasminogen activator inhibitor type-1. J Cell Biochem 92: 178-188

    Article  PubMed  CAS  Google Scholar 

  105. Chen Y, Budd RC, Kelm RJ et al. (2006) Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc Biol 26: 1777-1783

    Article  PubMed  CAS  Google Scholar 

  106. Al Fakhri N, Chavakis T, Schmidt-Wöll T et al. (2003) Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. Biol Chem 384: 423-435

    Article  PubMed  CAS  Google Scholar 

  107. Chen SC, Henry DO, Reczek PR et al. (2008) Plasminogen activator inhibitor-1 inhibits prostate tumor growth through endothelial apoptosis. Mol Cancer Ther 7: 1227-1236

    Article  PubMed  CAS  Google Scholar 

  108. Vial E, Sahai E, Marshall CJ. (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell 4: 67-79

    Article  PubMed  CAS  Google Scholar 

  109. Nguyen DH, Webb DJ, Catling AD et al. (2000) Urokinase-type plasminogen activator stimulates the Ras/Extracellular signal-regulated kinase (ERK) signaling pathway and MCF-7 cell migration by a mechanism that requires focal adhesion kinase, Src, and Shc. Rapid dissociation of GRB2/Sps-Shc complex is. J Biol Chem 275: 19382-19388

    Article  PubMed  CAS  Google Scholar 

  110. LaRusch GA, Mahdi F, Shariat-Madar Z et al. (2010) Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis. Blood 115: 5111-5120

    Article  PubMed  CAS  Google Scholar 

  111. Heilmann C. (2002) Collateral growth: cells arrive at the construction site. Cardiovasc Surg 10: 570-578

    Article  PubMed  Google Scholar 

  112. Zarins CK, Zatina MA, Giddens DP et al. (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5: 413-420

    PubMed  CAS  Google Scholar 

  113. Zhou AL, Egginton S, Hudlicka O et al. (1998) Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha(1)-antagonist prazosin. Cell Tissue Res 293: 293-303

    Article  PubMed  CAS  Google Scholar 

  114. Egginton S, Gerritsen M. (2003) Lumen formation - In vivo versus in vitro observations. Microcirculation 10: 45-61

    PubMed  Google Scholar 

  115. Chen HH, Wang DL. (2004) Nitric oxide inhibits matrix metalloproteinase-2 expression via the induction of activating transcription factor 3 in endothelial cells 1. Mol Pharmacol 65: 1130-1140

    Article  PubMed  CAS  Google Scholar 

  116. Milkiewicz M, Kelland C, Colgan S et al. (2006) Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol 208: 229-237

    Article  PubMed  CAS  Google Scholar 

  117. Ohno M, Cooke JP, Dzau VJ et al. (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95: 1363-1369

    Article  PubMed  CAS  Google Scholar 

  118. Antonelli-Orlidge A, Saunders KB, Smith SR et al. (1989) An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544-4548

    Article  PubMed  CAS  Google Scholar 

  119. Neubauer K, Krüger M, Quondamatteo F et al. (1999) Transforming growth factor-beta1 stimulates the synthesis of basement membrane proteins laminin, collagen type IV and entactin in rat liver sinusoidal endothelial cells. J Hepatol 31: 692-702

    Article  PubMed  CAS  Google Scholar 

  120. Usui T, Takase M, Kaji Y et al. (1998) Extracellular matrix production regulation by TGF-beta in corneal endothelial cells. Invest Ophthalmol Vis Sci 39: 1981-1989

    PubMed  CAS  Google Scholar 

  121. Walshe TE, Saint-Geniez M, Maharaj AS et al. (2009) TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4: e5149

    Article  PubMed  CAS  Google Scholar 

  122. Goumans MJ, Valdimarsdottir G, Itoh S et al. (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21: 1743-1753

    Article  PubMed  CAS  Google Scholar 

  123. Carlo MD, Cole AA, Levine LA. (2008) Differential calcium independent regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by interleukin-1beta and transforming growth factor-beta in Peyronie’s plaque fibroblasts. J Urol 179: 2447-2455

    Article  PubMed  CAS  Google Scholar 

  124. Kang HR, Cho SJ, Lee CG et al. (2007) Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-12. J Biol Chem 282: 7723-7732

    Article  PubMed  CAS  Google Scholar 

  125. Ito K, Ryuto M, Ushiro S et al. (1995) Expression of tissue-type plasminogen activator and its inhibitor couples with development of capillary network by human microvascular endothelial cells on Matrigel. J Cell Physiol 162: 213-224

    Article  PubMed  CAS  Google Scholar 

  126. Lin MC, Almus-Jacobs F, Chen HH et al. (1997) Shear stress induction of the tissue factor gene. J Clin Invest 99: 737-744

    Article  PubMed  CAS  Google Scholar 

  127. Abumiya T, Sasaguri T, Taba Y et al. (2002) Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site. Arterioscler Thromb Vasc Biol 22: 907-913

    Article  PubMed  CAS  Google Scholar 

  128. Yun S, Dardik A, Haga M et al. (2002) Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277: 34808-34814

    Article  PubMed  CAS  Google Scholar 

  129. Sato Y. (2001) Role of ETS family transcription factors in vascular development and angiogenesis. Cell Struct Funct 26: 19-24

    Article  PubMed  CAS  Google Scholar 

  130. Wasylyk C, Schlumberger SE, Criqui-Filipe P et al. (2002) Sp100 interacts with ETS-1 and stimulates its transcriptional activity. J Mol Cell Biol 22: 2687-2702

    Article  CAS  Google Scholar 

  131. Dittmer J. (2003) The biology of the Ets1 proto-oncogene. Mol Cancer 2: 29-50

    Article  PubMed  Google Scholar 

  132. Pufall MA, Lee GM, Nelson ML et al. (2005) Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science 309: 142-145

    Article  PubMed  CAS  Google Scholar 

  133. Pepper MS, Montesano R. (1990) Proteolytic balance and capillary morphogenesis. Cell Differ Dev 32: 319-327

    Article  PubMed  CAS  Google Scholar 

  134. Ausprunk DH, Folkman J. (1977) Migration and Proliferation of Endothelial Cells in Preformed and Newly Formed Blood-Vessels During Tumor Angiogenesis. Microvasc Res 14: 53-65

    Article  PubMed  CAS  Google Scholar 

  135. Moses MA. (1997) The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 15: 180-189

    Article  PubMed  CAS  Google Scholar 

  136. Haas TL, Madri JA. (1999) Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: Implications for angiogenesis. Trends Cardiovasc Med 9: 70-77

    Article  PubMed  CAS  Google Scholar 

  137. Kowluru RA, Kanwar M. (2009) Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Radic Biol Med 46: 1677-1685

    Article  PubMed  CAS  Google Scholar 

  138. Kessenbrock K, Plaks V, Werb Z. (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 141: 52-67

    Article  PubMed  CAS  Google Scholar 

  139. Deryugina EI, Quigley JP. (2010) Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory functions. Biochim Biophys Acta 1803: 103-120

    Article  PubMed  CAS  Google Scholar 

  140. Haas TL, Milkiewicz M, Davis SJ et al. (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol 279: H1540-H1547

    CAS  Google Scholar 

  141. Rivilis I, Milkiewicz M, Boyd P et al. (2002) Differential involvement of MMP-2 and VEGF during muscle stretch- versus shear stress-induced angiogenesis. Am J Physiol 283: H1430-H1438

    CAS  Google Scholar 

  142. Rullman E, Norrbom J, Stromberg A et al. (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106: 804-812

    Article  PubMed  CAS  Google Scholar 

  143. Doyle JL, Haas TL. (2009) Differential role of beta-catenin in VEGF and histamine-induced MMP-2 production in microvascular endothelial cells. J Cell Biochem 107: 272-283

    Article  PubMed  CAS  Google Scholar 

  144. Milkiewicz M, Mohammadzadeh F, Ispanovic E et al. (2007) Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 100: 750-761

    Article  PubMed  CAS  Google Scholar 

  145. Ispanovic E, Haas TL. (2006) JNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells. Am J Physiol 291: C579-C588

    Article  CAS  Google Scholar 

  146. Tarallo S, Beltramo E, Berrone E et al. (2010) Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol 47: 105-111

    Article  PubMed  CAS  Google Scholar 

  147. Yana I, Sagara H, Takaki S et al. (2007) Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci 120: 1607-1614

    Article  PubMed  CAS  Google Scholar 

  148. Lehti K, Allen E, Birkedal-Hansen H et al. (2005) An MT1-MMP-PDGF receptor-beta axis regulates mural cell investment of the microvasculature. Genes Dev 19: 979-991

    Article  PubMed  CAS  Google Scholar 

  149. Davis GE, Stratman AN, Sacharidou A et al. (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288: 101-165

    Article  PubMed  CAS  Google Scholar 

  150. Li J, Wang JJ, Peng Q et al. (2012) Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy. PloS ONE 7: e52699

    Article  PubMed  CAS  Google Scholar 

  151. Renault MA, Roncalli J, Tongers J et al. (2010) Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol 49: 490-498

    Article  PubMed  CAS  Google Scholar 

  152. Kowluru RA, Mohammad G, dos Santos JM et al. (2011) Abrogation of MMP-9 Gene Protects Against the Development of Retinopathy in Diabetic Mice by Preventing Mitochondrial Damage. Diabetes 60: 3023-3033

    Article  PubMed  CAS  Google Scholar 

  153. Hattori N, Mochizuki S, Kishi K et al. (2009) MMP-13 Plays a Role in Keratinocyte Migration, Angiogenesis, and Contraction in Mouse Skin Wound Healing. Am J Pathol 175: 533-546

    Article  PubMed  CAS  Google Scholar 

  154. Zigrino P, Ayachi O, Schild A et al. (2012) Loss of epidermal MMP-14 expression interferes with angiogenesis but not with re-epithelialization. Eur J Cell Biol 91: 748-756

    Article  PubMed  CAS  Google Scholar 

  155. Azar DT, Casanova FH, Mimura T et al. (2010) Corneal Epithelial MT1-MMP Inhibits Vascular Endothelial Cell Proliferation and Migration. Cornea 29: 321-330

    Article  PubMed  Google Scholar 

  156. Miyazaki D, Nakamura A, Fukushima K et al. (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 20: 1787-1799

    Article  PubMed  CAS  Google Scholar 

  157. Itoh T, Tanioka M, Yoshida H et al. (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048-1051

    PubMed  CAS  Google Scholar 

  158. Ohno-Matsui K, Uetama T, Yoshida T et al. (2003) Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci 44: 5370-5375

    Article  PubMed  Google Scholar 

  159. Oh J, Takahashi R, Adachi E et al. (2004) Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23: 5041-5048

    Article  PubMed  CAS  Google Scholar 

  160. Johnson MD, Kim HR, Chesler L et al. (1994) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 160: 194-202

    Article  PubMed  CAS  Google Scholar 

  161. Raghu H, Nalla AK, Gondi CS et al. (2012) uPA and uPAR shRNA inhibit angiogenesis via enhanced secretion of SVEGFR1 independent of GM-CSF but dependent on TIMP-1 in endothelial and glioblastoma cells. Mol Oncol 6: 33-47

    Article  PubMed  CAS  Google Scholar 

  162. Mi M, Shi S, Li T et al. (2012) TIMP2 deficient mice develop accelerated osteoarthritis via promotion of angiogenesis upon destabilization of the medial meniscus. Biochem Biophys Res Commun 423: 366-372

    Article  PubMed  CAS  Google Scholar 

  163. Anand-Apte B, Pepper MS, Voest E et al. (1997) Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 38: 817-823

    PubMed  CAS  Google Scholar 

  164. Stratman AN, Malotte KM, Mahan RD et al. (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114: 5091-5101

    Article  PubMed  CAS  Google Scholar 

  165. Van Geest RJ, Klaassen I, Lesnik-Oberstein SY et al. (2012) Vitreous TIMP-1 levels associate with neovascularization and TGF-β2 levels but not with fibrosis in the clinical course of proliferative diabetic retinopathy. J Cell Commun Signal 7: 1-9

    Article  PubMed  Google Scholar 

  166. Fong KM, Kida Y, Zimmerman PV et al. (1996) TIMP1 and adverse prognosis in non-small cell lung cancer. Clin Cancer Res 2: 1369-1372

    PubMed  CAS  Google Scholar 

  167. McCarthy K, Maguire T, McGreal G et al. (1999) High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer 84: 44-48

    Article  PubMed  CAS  Google Scholar 

  168. Zeng ZS, Cohen AM, Zhang ZF et al. (1995) Elevated tissue inhibitor of metalloproteinase 1 RNA in colorectal cancer stroma correlates with lymph node and distant metastases. Clin Cancer Res 1: 899-906

    PubMed  CAS  Google Scholar 

  169. Oh CW, Hoover-Plow J, Plow EF. (2003) The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 1: 1683-1687

    Article  PubMed  CAS  Google Scholar 

  170. Pepper MS, Montesano R, Mandriota SJ et al. (1996) Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49: 138-162

    PubMed  CAS  Google Scholar 

  171. Mandriota SJ, Menoud PA, Pepper MS. (1996) Transforming growth factor beta 1 down-regulates vascular endothelial growth factor receptor 2/flk-1 expression in vascular endothelial cells. J Biol Chem 271: 11500-11505

    Google Scholar 

  172. Pepper MS, Vassalli JD, Montesano R et al. (1987) Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105: 2535-2541

    Article  PubMed  CAS  Google Scholar 

  173. Mazzieri R, Masiero L, Zanetta L et al. (1997) Control of type IV collagenase activity by components of the urokinase-plasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 16: 2319-2332

    Article  PubMed  CAS  Google Scholar 

  174. Pepper MS, Ferrara N, Orci L et al. (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181: 902-906

    Article  PubMed  CAS  Google Scholar 

  175. Bajou K, Masson V, Gerard RD et al. (2001) The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 152: 777-784

    Article  PubMed  CAS  Google Scholar 

  176. Bajou K, Noel As, Gerard RD et al. (1998) Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nature 4: 923-928

    Article  CAS  Google Scholar 

  177. Czekay RP, Wilkins-port CE, Higgins SP et al. (2011) PAI-1: An Integrator of Cell Signaling and Migration. Int J Cell Biol 2011:562481

    PubMed  Google Scholar 

  178. Isogai C, Laug WE, Shimada H et al. (2001) Plasminogen Activator Inhibitor-1 Promotes Angiogenesis by Stimulating Endothelial Cell Migration toward Fibronectin. Cancer Res 61: 5587-5594

    PubMed  CAS  Google Scholar 

  179. Chapman HA. (1997) Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. Curr Opinion Cell Biol 9: 714-724

    Article  PubMed  CAS  Google Scholar 

  180. Heymans S, Luttun A, Nuyens D et al. (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5: 1135-1142

    Article  PubMed  CAS  Google Scholar 

  181. Lijnen HR, Van Hoef B, Lupu F et al. (1998) Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler Thromb Vasc Biol 18: 1035-1045

    Article  PubMed  CAS  Google Scholar 

  182. Mawatari M, Okamura K, Matsuda T et al. (1991) Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192: 574-580

    Article  PubMed  CAS  Google Scholar 

  183. Brodsky S, Chen J, Lee A et al. (2001) Plasmin-dependent and -independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol 281: 1792-2001

    Google Scholar 

  184. Zablocki DK, Rade JJ, Alevriadou BR. (2000) Adenovirus-mediated expression of tissue plasminogen activator does not alter endothelial cell proliferation and invasion. In Vitro Cell Dev Biol Anim 36: 625-628

    Article  PubMed  CAS  Google Scholar 

  185. Schaper W, Ito WD. (1996) Molecular Mechanisms of Coronary Collateral Vessel Growth. Circ Res 79: 911-919

    Article  PubMed  CAS  Google Scholar 

  186. Chilian WM, Penn MS, Pung YF et al. (2012) Coronary collateral growth – back to the future. J Mol Cell Cardiol 52: 905-911

    Article  PubMed  CAS  Google Scholar 

  187. Hedin U, Bottger BA, Luthman J et al. (1989) A substrate of the cell-attachment sequence of fibronectin (Arg-Gly-Asp-Ser) is sufficient to promote transition of arterial smooth muscle cells from a contractile to a synthetic phenotype. Dev Biol 133: 489-501

    Article  PubMed  CAS  Google Scholar 

  188. Fung E, Helisch A. (2012) Macrophages in collateral arteriogenesis. Front Physiol 3: 353

    Article  PubMed  Google Scholar 

  189. Scholz D, Ziegelhoeffer T, Helisch A et al. (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34: 775-787

    Article  PubMed  CAS  Google Scholar 

  190. Lindner V, Reidy MA. (1993) Expression of basic fibroblast growth factor and its receptor by smooth muscle cells and endothelium in injured rat arteries. An en face study. Circ Res 73: 589-595

    Article  PubMed  CAS  Google Scholar 

  191. Keski-Oja J, Lohi J, Tuuttila A et al. (1992) Proteolytic processing of the 72,000-Da type IV collagenase by urokinase plasminogen activator. Exp Cell Res 202: 471-476

    Article  PubMed  CAS  Google Scholar 

  192. Li DY, Brooke B, Davis EC et al. (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393: 276-280

    Article  PubMed  CAS  Google Scholar 

  193. Sho E, Sho M, Singh TM et al. (2002) Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol 73: 142-153

    Article  PubMed  CAS  Google Scholar 

  194. Haas TL, Doyle JL, Distasi MR et al. (2007) Involvement of MMPs in the outward remodeling of collateral mesenteric arteries. Am J Physiol 293: H2429-H2437

    CAS  Google Scholar 

  195. Dodd T, Jadhav R, Wiggins L et al. (2011) MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. J Mol Cell Cardiol 51: 1015-1025

    Article  PubMed  CAS  Google Scholar 

  196. Cheng XW, Kuzuya M, Nakamura K et al. (2007) Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ Res 100: 904-913

    Article  PubMed  CAS  Google Scholar 

  197. Cai WJ, Koltai S, Kocsis E et al. (2003) Remodeling of the adventitia during coronary arteriogenesis. Am J Physiol 284: H31-H40

    CAS  Google Scholar 

  198. Yan SF, Fujita T, Lu J et al. (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6: 1355-1361

    Article  PubMed  CAS  Google Scholar 

  199. Silverman ES, Collins T. (1999) Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154: 665-670

    Article  PubMed  CAS  Google Scholar 

  200. Crawford HC, Matrisian LM. (1996) Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49: 20-37

    PubMed  CAS  Google Scholar 

  201. Nelson KK, Subbaram S, Connor KM et al. (2006) Redox-dependent matrix metalloproteinase-1 expression is regulated by JNK through Ets and AP-1 promoter motifs. J Biol Chem 281: 14100-14110

    Article  PubMed  CAS  Google Scholar 

  202. Rocic P, Kolz C, Reed R et al. (2007) Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth. Am J Physiol 292: H2729-H2736

    CAS  Google Scholar 

  203. Rajagopalan S, Meng XP, Ramasamy S et al. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98: 2572-2579

    Article  PubMed  CAS  Google Scholar 

  204. Castier Y, Brandes RP, Leseche G et al. (2005) p47phox-Dependent NADPH Oxidase Regulates Flow-Induced Vascular Remodeling. Circ Res 97: 533-540

    Article  PubMed  CAS  Google Scholar 

  205. Wang W, Sawicki G, Schulz R. (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53: 156-174

    Article  Google Scholar 

  206. Chakraborti T, Das S, Mandal M et al. (2002) Role of Ca2+-dependent metalloprotease-2 in stimulating Ca2+ ATPase activity under peroxynitrite treatment in bovine pulmonary artery smooth muscle membrane. IUBMB 53: 167-173

    Article  CAS  Google Scholar 

  207. Cao D, Mizukami IF, Garni-Wagner BA et al. (1995) Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J Immunol 154: 1817-1829

    PubMed  CAS  Google Scholar 

  208. Sitrin RG, Pan PM, Harper HA et al. (2000) Clustering of urokinase receptors (uPAR; CD87) induces proinflammatory signaling in human polymorphonuclear neutrophils. J Immunol 165: 3341-3349

    PubMed  CAS  Google Scholar 

  209. Plekhanova O, Berk BC, Bashtrykov P et al. (2009) Oligonucleotide microarrays reveal regulated genes related to inward arterial remodeling induced by urokinase plasminogen activator. J Vasc Res 46: 177-187

    Article  PubMed  CAS  Google Scholar 

  210. van Royen N, Hoefer I, Buschmann I et al. (2002) Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. FASEB J 16: 432-434

    PubMed  Google Scholar 

Download references

Acknowledgements

ERM and CU contributed equally to the manuscript. TLH is funded by the Heart and Stroke Foundation of Canada Grant in Aid (NA 7059) and National Science and Engineering Research Council of Canada Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara L. Haas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandel, E.R., Uchida, C., Haas, T.L. (2014). Regulation of Proteolysis in Vascular Remodeling. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_16

Download citation

Publish with us

Policies and ethics