Skip to main content

Advertisement

Log in

Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Pericyte survival in diabetic retinopathy depends also on interactions with extracellular matrix (ECM) proteins, which are degraded by matrix metalloproteinases (MMP). Elevated glucose influences ECM turnover, through expression of MMP and their tissue inhibitors, TIMP. We reported on reduced pericyte adhesion to high glucose-conditioned ECM and correction by thiamine. We aimed at verifying the effects of thiamine and benfotiamine on MMP-2, MMP-9 and TIMP expression and activity in human vascular cells with high glucose. In HRP, MMP-2 activity, though not expression, increased with high glucose and decreased with thiamine and benfotiamine; TIMP-1 expression increased with high glucose plus thiamine and benfotiamine; MMP-9 was not expressed. In EC, MMP-9 and MMP-2 expression and activity increased with high glucose, but thiamine and benfotiamine had no effects; TIMP-1 expression was unchanged. Neither glucose nor thiamine modified TIMP-2 and TIMP-3 expression. TIMP-1 concentrations did not change in either HRP or EC. High glucose imbalances MMP/TIMP regulation, leading to increased ECM turnover. Thiamine and benfotiamine correct the increase in MMP-2 activity due to high glucose in HRP, while increasing TIMP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Williams FM, Dosso AA, Kohner EM, Porta M (1993) Pericyte mitogenic activity is reduced in the blood of type 1 diabetic patients with and without retinopathy. Acta Diabetol 30:123–127

    Article  CAS  PubMed  Google Scholar 

  2. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  3. Hammes HP (2005) Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res 37:39–43

    Article  PubMed  Google Scholar 

  4. Yang R, Liu H, Williams I, Chaqour B (2007) Matrix metalloproteinase-2 expression and apoptogenic activity in retinal pericytes: implications in diabetic retinopathy. Ann NY Acad Sci 110:196–201

    Article  Google Scholar 

  5. Borden P, Heller RA (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 7:159–178

    CAS  PubMed  Google Scholar 

  6. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    CAS  PubMed  Google Scholar 

  7. Fisher E, McLennan SV, Tada H, Heffernan S, Yue DK, Turtle JR (1991) Interaction of ascorbic acid and glucose on production of collagen and proteoglycan by fibroblasts. Diabetes 40:371–376

    Article  CAS  PubMed  Google Scholar 

  8. Pugliese G, Pricci F, Pugliese F, Mene P, Lenti L, Andreani D, Galli G, Casini A, Bianchi S, Rotella CM (1994) Mechanisms of glucose-enhanced extracellular matrix accumulation in rat glomerular mesangial cells. Diabetes 43:478–490

    Article  CAS  PubMed  Google Scholar 

  9. Death AK, Fisher EJ, McGrath KCY, Yue DK (2003) High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes. Atherosclerosis 168:263–269

    Article  CAS  PubMed  Google Scholar 

  10. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD (2005) Matrix metalloproteinases and diabetic vascular complications. Angiology 56:173–189

    Article  PubMed  Google Scholar 

  11. Chung AW, Hsiang YN, Matzke LA, McManus BM, van Breemen C, Okon EB (2006) Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature. Circ Res 99:140–148

    Article  CAS  PubMed  Google Scholar 

  12. Hao F, Yu JD (2003) High glucose enhances expression of matrix metalloproteinase-2 in smooth muscle cells. Acta Pharmacol Sin 24:534–538

    CAS  PubMed  Google Scholar 

  13. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl (77):S26–S30

    Article  CAS  PubMed  Google Scholar 

  14. La Selva M, Beltramo E, Pagnozzi F, Bena E, Molinatti GM, Porta M (1996) Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia 39:1263–1268

    Article  CAS  PubMed  Google Scholar 

  15. Thornalley PJ, Jahan I, Ng R (2001) Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J Biochem (Tokyo) 129:543–549

    CAS  Google Scholar 

  16. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    Article  CAS  PubMed  Google Scholar 

  17. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M (2006) Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem 281:9307–9313

    Article  CAS  PubMed  Google Scholar 

  18. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  CAS  PubMed  Google Scholar 

  19. Creager MA, Lüscher TF, Cosentino F, Beckman JA (2003) Diabetes and vascular disease: pathology, clinical consequences, and medical therapy. Part I. Circulation 108:1527–1532

    Article  PubMed  Google Scholar 

  20. Visse R, Nagase H (2003) Matrix metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  CAS  PubMed  Google Scholar 

  21. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269–285

    Article  CAS  PubMed  Google Scholar 

  22. Woessner JF, Nagase H (2000) Protein substrates of the MMPs. In matrix metalloproteinases and TIMPs, 1st edn. Oxford University Press, New York, pp 87–97

    Google Scholar 

  23. Podestá F, Roth T, Ferrara F, Cagliero E, Lorenzi M (1997) Cytoskeletal changes induced by excess extracellular matrix impairs endothelial cell replication. Diabetologia 40:879–886

    Article  PubMed  Google Scholar 

  24. Jacqueminet S, Ben Abdesselam O, Chapman MJ, Nicolay N, Foglietti MJ, Grimaldi A, Beaudeux JL (2006) Elevated circulating levels of matrix metalloproteinase-9 in type 1 diabetic patients with and without retinopathy. Clin Chim Acta 367:103–107

    Article  CAS  PubMed  Google Scholar 

  25. Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44:2163–2170

    Article  PubMed  Google Scholar 

  26. Ishizaki E, Takai S, Ueki M, Maeno T, Maruichi M, Sugiyama T, Oku H, Ikeda T, Miyazaki M (2006) Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy. Am J Ophthalmol 141:129–134

    Article  CAS  PubMed  Google Scholar 

  27. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumour angiogenesis and tumour metastasis. Pathol Oncol Res 7:14–23

    Article  CAS  PubMed  Google Scholar 

  28. Corbel M, Belleguic C, Boichot E, Lagente V (2002) Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 18:51–61

    Article  CAS  PubMed  Google Scholar 

  29. Giebel SJ, Menicucci G, McGuire PG, Das A (2005) Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab Invest 85:597–607

    Article  CAS  PubMed  Google Scholar 

  30. Beaudeux JL, Giral P, Bruckert E, Bernard M, Foglietti MJ, Chapman MJ (2003) Serum matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1 as potential markers of carotid atherosclerosis in infraclinical hyperlipidemia. Atherosclerosis 169:139–146

    Article  CAS  PubMed  Google Scholar 

  31. Kuzuya M, Iguchi A (2003) Role of matrix metalloproteinases in vascular remodelling. J Atheroscler Thromb 10:275–282

    CAS  PubMed  Google Scholar 

  32. Barth JL, Yu Y, Song W, Lu K, Dashti A, Huang Y, Argraves WS, Lyons TJ (2007) Oxidised, glycated LDL selectively influences tissue inhibitor of metalloproteinase-3 gene expression and protein production in human retinal capillary pericytes. Diabetologia 50:2200–2208

    Article  CAS  PubMed  Google Scholar 

  33. Grant MB, Caballero S, Tarnuzzer RW, Bass KE, Ljubimov AV, Spoerri PE, Galardy RE (1998) Matrix metalloproteinase expression in human retinal microvascular cells. Diabetes 47:1311–1317

    Article  CAS  PubMed  Google Scholar 

  34. Garner A (1993) Histopathology of diabetic retinopathy in man. Eye 7:250–253

    PubMed  Google Scholar 

  35. Taylor CM, Thompson JM, Weiss JB (1991) Matrix integrity and the control of angiogenesis. Int J Radiat Biol 60:61–64

    Article  CAS  PubMed  Google Scholar 

  36. Furness PN (1997) Basement membrane synthesis and degradation. J Pathol 183:1–3

    Article  CAS  PubMed  Google Scholar 

  37. Ha H, Lee HB (2005) Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and diabetic kidney. Nephrology (Carlton) S7–S10

  38. Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, Harrison DG, Tsao PS (2001) Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 88:1291–1298

    Article  CAS  PubMed  Google Scholar 

  39. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro: implications for atherosclerotic plaque stability. J Clin Invest 98:2572–2579

    Article  CAS  PubMed  Google Scholar 

  40. Ho FM, Liu SH, Lin WW, Liau CS (2007) Opposite effects of high glucose on MMP-2 and TIMP-2 in human endothelial cells. J Cell Biochem 101:442–450

    Article  CAS  PubMed  Google Scholar 

  41. Beltramo E, Berrone E, Tarallo S, Porta M (2008) Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications. Acta Diabetol 45:131–141

    Article  CAS  PubMed  Google Scholar 

  42. Pomero F, Molinar Min A, La Selva M, Allione A, Molinatti GM, Porta M (2001) Benfotiamine is similar to thiamine in correcting endothelial cell defects induced by high glucose. Acta Diabetol 38:135–138

    Article  CAS  PubMed  Google Scholar 

  43. Beltramo E, Pomero F, Allione A, D’Alù F, Ponte E, Porta M (2002) Pericyte adhesion is impaired on extracellular matrix produced by endothelial cells in high hexose concentrations. Diabetologia 45:416–419

    Article  CAS  PubMed  Google Scholar 

  44. Beltramo E, Buttiglieri S, Pomero F, Allione A, D’Alù F, Ponte E, Porta M (2003) A study of capillary pericyte viability on extracellular matrix produced by endothelial cells in high glucose. Diabetologia 46:409–415

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Compagnia di San Paolo, Turin, Italy. E. Beltramo was the recipient of the 2002 European Association for the Study of Diabetes (EASD)/Eli Lilly Research Fellowship in Diabetes Microvascular Complications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Tarallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarallo, S., Beltramo, E., Berrone, E. et al. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol 47, 105–111 (2010). https://doi.org/10.1007/s00592-009-0124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-009-0124-5

Keywords

Navigation