Skip to main content

Barriers to Drug Delivery for Brain Trauma

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

  • 1454 Accesses

Abstract

One of the most opposing barriers—both literally and figuratively—challenging the translational advancement of therapeutics targeting brain trauma involves effective delivery of potentially neuroprotective agents to the damaged brain. Aspects distinguishing delivery of drugs to the injured brain relative to other tissues include: (1) several unique physical features of the blood–brain barrier (BBB) vs. other blood–tissue barriers; (2) added diffusion distance associated with astrocyte swelling (in addition to interstitial edema) away from the therapeutic target; and (3) membrane transporters at both the BBB and blood–CSF barriers (BCSFB), such as ATP-binding cassette (ABC) transporters, organic anion transporters (OAT), and organic anion transporting peptides (OATP) that have the capacity to move drug substrates out of the brain, actively reducing brain bioavailability. While these “barriers” represent unique challenges to the development of efficacious neuroprotective agents for the treatment of traumatic brain injury (TBI), recent pharmacological advancements provide an optimistic outlook for designing strategies that impact outcome for victims of TBI in the near future.

We can’t go over it. We can’t go under it. Oh no! We’ve got to go through it! —Michael Rosen, We’re Going on a Bear Hunt Got to go through it to get to it —Graham Central Station, Release Yourself

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armulik A et al (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561

    Article  PubMed  CAS  Google Scholar 

  2. Abbott NJ et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    Article  PubMed  CAS  Google Scholar 

  3. Redzic Z (2011) Molecular biology of the blood–brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8(1):3

    Article  PubMed  Google Scholar 

  4. Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 31(6):246–254

    Article  PubMed  CAS  Google Scholar 

  5. Begley DJ (2004) ABC transporters and the blood–brain barrier. Curr Pharm Des 10(12):1295–1312

    Article  PubMed  CAS  Google Scholar 

  6. Hartz AM, Bauer B (2011) ABC transporters in the CNS—an inventory. Curr Pharm Biotechnol 12(4):656–673

    Article  PubMed  CAS  Google Scholar 

  7. Hartz AM, Bauer B (2010) Regulation of ABC transporters at the blood–brain barrier: new targets for CNS therapy. Mol Interv 10(5):293–304

    Article  PubMed  CAS  Google Scholar 

  8. Shen S, Zhang W (2010) ABC transporters and drug efflux at the blood–brain barrier. Rev Neurosci 21(1):29–53

    PubMed  CAS  Google Scholar 

  9. Sun H et al (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55(1):83–105

    Article  PubMed  CAS  Google Scholar 

  10. Pardridge WM (2003) Blood–brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2):90–105, 51

    Article  PubMed  CAS  Google Scholar 

  11. Narayan RK et al (2002) Clinical trials in head injury. J Neurotrauma 19(5):503–557

    Article  PubMed  Google Scholar 

  12. Graff CL, Pollack GM (2004) Drug transport at the blood–brain barrier and the choroid plexus. Curr Drug Metab 5(1):95–108

    Article  PubMed  CAS  Google Scholar 

  13. Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  PubMed  CAS  Google Scholar 

  14. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg GA (2012) Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab 32(7):1139–1151

    Article  PubMed  CAS  Google Scholar 

  16. Kuroiwa T et al (1985) The biphasic opening of the blood–brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 68(2):122–129

    Article  PubMed  CAS  Google Scholar 

  17. Baskaya MK et al (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226(1):33–36

    Article  PubMed  CAS  Google Scholar 

  18. Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164(4):1207–1229

    Article  PubMed  CAS  Google Scholar 

  19. Marklund N et al (2006) Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des 12(13):1645–1680

    Article  PubMed  CAS  Google Scholar 

  20. Shlosberg D et al (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  PubMed  CAS  Google Scholar 

  21. Lo EH et al (2001) Drug delivery to damaged brain. Brain Res Brain Res Rev 38(1–2):140–148

    Article  PubMed  CAS  Google Scholar 

  22. Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18(3):157–167

    Article  PubMed  CAS  Google Scholar 

  23. Smith DH, Hicks R, Povlishock JT (2013) Therapy development for diffuse axonal injury. J Neurotrauma 30(5):307–323

    Article  PubMed  Google Scholar 

  24. Reulen HJ et al (1978) Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48(5):754–764

    Article  PubMed  CAS  Google Scholar 

  25. Lai Y et al (2008) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28(3):540–550

    Article  PubMed  CAS  Google Scholar 

  26. Huttunen KM, Raunio H, Rautio J (2011) Prodrugs–from serendipity to rational design. Pharmacol Rev 63(3):750–771

    Article  PubMed  CAS  Google Scholar 

  27. Tekes K et al (2011) Prodrugs and active metabolites among antidepressive compounds. Neuropsychopharmacol Hung 13(2):103–110

    PubMed  Google Scholar 

  28. Patel MM et al (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23(1):35–58

    Article  PubMed  CAS  Google Scholar 

  29. Bodor N, Buchwald P (1997) Drug targeting via retrometabolic approaches. Pharmacol Ther 76(1–3):1–27

    Article  PubMed  CAS  Google Scholar 

  30. Herve F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10(3):455–472

    Article  PubMed  Google Scholar 

  31. Zhou QH et al (2011) Neuroprotection with a brain-penetrating biologic tumor necrosis factor inhibitor. J Pharmacol Exp Ther 339(2):618–623

    Article  PubMed  CAS  Google Scholar 

  32. Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24(9):1759–1771

    Article  PubMed  CAS  Google Scholar 

  33. Dehouck B et al (1997) A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 138(4):877–889

    Article  PubMed  CAS  Google Scholar 

  34. Rousselle C et al (2000) New advances in the transport of doxorubicin through the blood–brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57(4):679–686

    PubMed  CAS  Google Scholar 

  35. Suntres ZE (2011) Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol 2011:152474

    PubMed  Google Scholar 

  36. Huwyler J et al (2002) By-passing of P-glycoprotein using immunoliposomes. J Drug Target 10(1):73–79

    Article  PubMed  CAS  Google Scholar 

  37. Boado RJ, Pardridge WM (2011) The Trojan horse liposome technology for nonviral gene transfer across the blood–brain barrier. J Drug Deliv 2011:296151

    Article  PubMed  Google Scholar 

  38. Voinea M, Simionescu M (2002) Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J Cell Mol Med 6(4):465–474

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt J et al (2003) Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126(Pt 8):1895–1904

    Article  PubMed  Google Scholar 

  40. Wipf P et al (2005) Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin-TEMPO conjugates. J Am Chem Soc 127(36):12460–12461

    Article  PubMed  CAS  Google Scholar 

  41. Ji J et al (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat Neurosci 15(10):1407–1413

    Article  PubMed  CAS  Google Scholar 

  42. Giacomini KM et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  PubMed  CAS  Google Scholar 

  43. Burnell JM, Kirby WM (1951) Effectiveness of a new compound, benemid, in elevating serum penicillin concentrations. J Clin Invest 30(7):697–700

    Article  PubMed  CAS  Google Scholar 

  44. Robbins N et al (2012) The history and future of probenecid. Cardiovasc Toxicol 12(1):1–9

    Article  PubMed  CAS  Google Scholar 

  45. Coley HM (2010) Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol 596:341–358

    Article  PubMed  CAS  Google Scholar 

  46. Kalvass JC, et al (2013) Why clinical inhibition of efflux transport at the blood–brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther 94:80–94

    Google Scholar 

  47. Siegal T et al (2000) In vivo assessment of the window of barrier opening after osmotic blood–brain barrier disruption in humans. J Neurosurg 92(4):599–605

    Article  PubMed  CAS  Google Scholar 

  48. Arima H et al (2003) Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes. J Biol Chem 278(45):44525–44534

    Article  PubMed  CAS  Google Scholar 

  49. Matsukado K et al (1996) Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. Neurosurgery 39(1):125–133, discussion 133–4

    Article  PubMed  CAS  Google Scholar 

  50. Erdlenbruch B et al (2003) Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 140(7):1201–1210

    Article  PubMed  CAS  Google Scholar 

  51. Benoit JP et al (2000) Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 65(1–2):285–296

    Article  PubMed  CAS  Google Scholar 

  52. Halliday AJ et al (2012) Novel methods of antiepileptic drug delivery—polymer-based implants. Adv Drug Deliv Rev 64(10):953–964

    Article  PubMed  CAS  Google Scholar 

  53. Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700

    Article  PubMed  CAS  Google Scholar 

  54. Leigh K, Elisevich K, Rogers KA (1994) Vascularization and microvascular permeability in solid versus cell-suspension embryonic neural grafts. J Neurosurg 81(2):272–283

    Article  PubMed  CAS  Google Scholar 

  55. Farra R et al (2012) First-in-human testing of a wirelessly controlled drug delivery microchip. Sci Transl Med 4(122):122ra21

    Article  PubMed  Google Scholar 

  56. Salvatore MF et al (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202(2):497–505

    Article  PubMed  CAS  Google Scholar 

  57. Varhabhatla NC, Zuo Z (2012) Rising complication rates after intrathecal catheter and pump placement in the pediatric population: analysis of national data between 1997 and 2006. Pain Physician 15(1):65–74

    PubMed  Google Scholar 

  58. Heydel JM et al (2010) UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 42(1):74–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. B. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willyerd, F.A., Empey, P.E., Kochanek, P.M., Clark, R.S.B. (2014). Barriers to Drug Delivery for Brain Trauma. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics