Skip to main content

Vascular Actions of Hypothermia in Brain Trauma

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

  • 1429 Accesses

Abstract

Traumatic brain injury (TBI) is a serious condition that affects approximately 1.5 million people in the United States each year. Currently, there are no approved therapies to treat the devastating consequences of severe TBI. Therapeutic hypothermia has a history of showing efficacy both in animal models and clinical studies. Potential mechanisms by which hypothermia may improve traumatic outcome include targeting vascular alterations such as by reducing the incidence of blood–brain barrier (BBB) permeability. In addition, therapeutic hypothermia promotes normal vascular reactivity and reduces a variety of inflammatory processes that are activated by trauma-induced cerebrovascular damage. Ongoing research in the laboratory and clinic is demonstrating that therapeutic hypothermia may indeed protect specific populations of severe TBI patients by targeting vascular perturbations including altered BBB function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dietrich WD (1992) The importance of brain temperature in cerebral injury. J Neurotrauma 9(Suppl 2):S475–S485

    PubMed  Google Scholar 

  2. Dietrich WD, Busto R, Globus MY, Ginsberg MD (1996) Brain damage and temperature: cellular and molecular mechanisms. Adv Neurol 71:177–194

    PubMed  CAS  Google Scholar 

  3. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278

    PubMed  CAS  Google Scholar 

  4. Dietrich WD, Alonso O, Busto R, Globus MY, Ginsberg MD (1994) Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250–258

    Article  PubMed  CAS  Google Scholar 

  5. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11(1):114–121

    Article  PubMed  CAS  Google Scholar 

  6. Dietrich WD, Bramlett HM (2010) The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 7(1):43–50

    Article  PubMed  Google Scholar 

  7. Polderman KH (2008) Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet 371(9628):1955–1969

    Article  PubMed  Google Scholar 

  8. Clifton GL, Coffey CS, Fourwinds S, Zygun D, Valadka A, Smith KR Jr (2012) Early induction of hypothermia for evacuated intracranial hematomas: a post hoc analysis of two clinical trials. J Neurosurg 117(4):714–720

    Article  PubMed  Google Scholar 

  9. Atkins CM, Truettner JS, Lotocki G, Sanchez-Molano J, Kang Y, Alonso OF, Sick TJ, Dietrich WD, Bramlett HM (2010) Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur J Neurosci 32(11):1912–1920

    Article  PubMed  Google Scholar 

  10. Bramlett HM, Green EJ, Dietrich WD, Busto R, Globus MY, Ginsberg MD (1995) Posttraumatic brain hypothermia provides protection form sensorimotor and cognitive behavioral deficits. J Neurotrauma 12:289–298

    Article  PubMed  CAS  Google Scholar 

  11. Urbano LA, Oddo M (2012) Therapeutic hypothermia for traumatic brain injury. Curr Neurol Neurosci Rep 12(5):580–591

    Article  PubMed  CAS  Google Scholar 

  12. Jiang JY, Lyeth BG, Kapasi MZ, Jenkins LW, Povlishock JT (1992) Moderate hypothermia reduces blood–brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol 84:495–500

    Article  PubMed  CAS  Google Scholar 

  13. Smith SL, Hall ED (1996) Mild pre- and posttraumatic hypothermia attenuates blood–brain barrier damage following controlled cortical impact injury in the rat. J Neurotrauma 13(1):1–9

    Article  PubMed  CAS  Google Scholar 

  14. Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphological, and metabolic abnormalities of the central microcirculation after concussive brain injury in cats. Circ Res 46:37–47

    Article  PubMed  CAS  Google Scholar 

  15. Wei EP, Hamm RJ, Baranova AI, Povlishock JT (2009) The long-term microvascular and behavioral consequences of experimental traumatic brain injury after hypothermic intervention. J Neurotrauma 26(4):527–537

    Article  PubMed  CAS  Google Scholar 

  16. Oda Y, Gao G, Wei EP, Povlishock JT (2011) Combinational therapy using hypothermia and immunophilin ligand FK506 to target altered pial arteriolar reactivity, axonal damage, and blood–brain barrier dysfunction after traumatic brain injury in rat. J Cereb Blood Flow Metab 32(4):1143–1154

    Article  Google Scholar 

  17. Suehiro E, Ueda Y, Wei EP, Kontos HA, Povlishock JT (2003) Postraumatic hypothermia followed by slow rewarming protects the cerebral microcirculation. J Neurotrauma 20:381–390

    Article  PubMed  Google Scholar 

  18. Yokobori S, Gajavelli S, Mondello S, Mo-Seaney J, Bramlett HM, Dietrich WD, Bullock MR (2012) Neuroprotective effect of preoperatively induced mild hypothermia as determined by biomarkers and histopathological estimation in a rat subdural hematoma decompression model. J Neurosurg 118:370–80

    Article  PubMed  Google Scholar 

  19. Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J (2000) The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl 76:125–129

    PubMed  CAS  Google Scholar 

  20. Morganti-Kossmann MC, Bye N, Nguyen P, Kossmann T (2005) Influence of brain trauma on blood–brain barrier properties. In: De Vries E, Prat A (eds) The blood–brain barrier and its microenvironment. New York, Taylor & Francis, pp 457–480

    Chapter  Google Scholar 

  21. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201

    Article  PubMed  CAS  Google Scholar 

  22. Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood–brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77(1):141–148

    Article  PubMed  CAS  Google Scholar 

  23. Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  PubMed  CAS  Google Scholar 

  24. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  PubMed  CAS  Google Scholar 

  25. Adelson PD, Whalen MJ, Kochanek PM, Robichaud P, Carlos TM (1998) Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir Suppl 71:104–106

    PubMed  CAS  Google Scholar 

  26. Cortez SC, McIntosh TK, Noble LJ (1989) Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res 482(2):271–282

    Article  PubMed  CAS  Google Scholar 

  27. Hicks RR, Baldwin SA, Scheff SW (1997) Serum extravasation and cytoskeletal alterations following traumatic brain injury in rats. Comparison of lateral fluid percussion and cortical impact models. Mol Chem Neuropathol 32(1–3):1–16

    Article  PubMed  CAS  Google Scholar 

  28. Povlishock JT, Becker DP, Sullivan HG, Miller JD (1978) Vascular permeability alterations to horseradish peroxidase in experimental brain injury. Brain Res 22:223–239

    Article  Google Scholar 

  29. Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11:289–301

    Article  PubMed  CAS  Google Scholar 

  30. Lotocki G, de Rivero Vaccari JP, Perez ER, Sanchez-Molano J, Furones-Alonso O, Bramlett HM, Dietrich WD (2009) Alterations in blood–brain barrier permeability to large and small molecules and leukocyte accumulation after traumatic brain injury: effects of post-traumatic hypothermia. J Neurotrauma 26(7):1123–1134

    Article  PubMed  Google Scholar 

  31. Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ (1997) The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226(1):33–36

    Article  PubMed  Google Scholar 

  32. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A et al (2007) Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25:231–238

    Article  PubMed  CAS  Google Scholar 

  33. Ueda Y, Wei EP, Kontos HA, Suehiro E, Povlishock JT (2003) Effects of delayed, prolonged hypothermia on the pial vascular response after traumatic brain injury in rats. J Neurosurg 99:899–906

    Article  PubMed  Google Scholar 

  34. Golding EM, Robertson CS, Bryan RM Jr (1999) The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 21:299–332

    Article  PubMed  CAS  Google Scholar 

  35. Lin Y, Pan Y, Wang M, Huang X, Yin Y, Wang Y, Jia F, Xiong W, Zhang N, Jiang JY (2012) Blood–brain barrier permeability is positively correlated with cerebral microvascular perfusion in the early fluid percussion-injured brain of the rat. Lab Invest 92(11):1623–1634

    Article  PubMed  CAS  Google Scholar 

  36. Fujita M, Oda Y, Wei EP, Povlishock JT (2011) The combination of either tempol or FK506 with delayed hypothermia: implications for traumatically induced microvascular and axonal protection. J Neurotrauma 28:1209–1218

    Article  PubMed  Google Scholar 

  37. Fujita M, Wei EP, Povlishock JT (2012) Effects of hypothermia on cerebral autoregulatory vascular responses in two rodent models of traumatic brain injury. J Neurotrauma 29(7):1491–1498

    Article  PubMed  Google Scholar 

  38. Kinoshita K, Chatzipanteli K, Alonso OF, Howard M, Dietrich WD (2002) The effect of brain temperature on hemoglobin extravasation after traumatic brain injury. J Neurosurg 97:945–953

    Article  PubMed  Google Scholar 

  39. Povlishock JT, Wei EP (2009) Posthypothermic rewarming considerations following traumatic brain injury. J Neurotrauma 26(3):333–340

    Article  PubMed  Google Scholar 

  40. Hartl R, Medary M, Ruge M, Arfors KE, Ghajar J (1997) Blood–brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence. Acta Neurochir Suppl 70:240–242

    PubMed  CAS  Google Scholar 

  41. Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM et al (2000) Experimental closed head injury: analysis of neurological outcome, blood–brain barrier dysfunction, intra-cranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20:369–380

    Article  PubMed  CAS  Google Scholar 

  42. Chatzipanteli K, Alonso OF, Kraydieh S, Dietrich WD (2000) Importance of post-traumatic hypothermia and hyperthermia on the inflammatory response after fluid-percussion brain injury: biochemical and immunocytochemical studies. J Cereb Blood Flow Metab 20:531–542

    Article  PubMed  CAS  Google Scholar 

  43. Whalen MJ, Carlos TM, Clark RS, Marion DW, DeKosky MS, Heineman S (1997) The relationship between brain temperature and neutrophil accumulation after traumatic brain injury in rats. Acta Neurochir Suppl 70:260–261

    PubMed  CAS  Google Scholar 

  44. Whalen MJ, Carlos TM, Clark RS, Marion DW, DeKosky ST, Heineman S et al (1997) The effect of brain temperature on acute inflammation after traumatic brain injury in rats. J Neurotrauma 14:561–572

    Article  PubMed  CAS  Google Scholar 

  45. Sutcliffe IT, Smith HA, Stanimirovic D, Hutchison SB (2001) Effects of moderate hypothermia on IL-1 beta-induced leukocyte rolling and adhesion in pial microcirculation of mice and on proinflammatory gene expression in human cerebral endothelial cells. J Cereb Blood Flow Metab 21:1310–1319

    Article  PubMed  CAS  Google Scholar 

  46. Chatzipanteli K, Wada K, Busto R, Dietrich WD (1999) Effects of moderate hypothermia on constitutive and inducible nitric oxide synthase activities after traumatic brain injury in the rat. J Neurochem 72(5):2047–2052

    Article  PubMed  CAS  Google Scholar 

  47. Kinoshita K, Chatzipanteli K, Vitarbo E, Truettner JS, Alonso OF, Dietrich WD (2002) Interleukin-1β messenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery 51(1):195–203; discussion 203

    Article  PubMed  Google Scholar 

  48. Globus MY, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65(4):1704–1711

    Article  PubMed  CAS  Google Scholar 

  49. Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood–brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11(4):393–404

    Article  PubMed  CAS  Google Scholar 

  50. Readnower RD, Chavko M, Adeeb S, Conroy MD, Pauly JR, McCarron RM, Sullivan PG (2010) Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 88(16):3530–3539

    Article  PubMed  CAS  Google Scholar 

  51. Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. J Neurochem 101(2):566–576

    Article  PubMed  CAS  Google Scholar 

  52. Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69(1):1–9

    Article  PubMed  CAS  Google Scholar 

  53. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20(12):1681–1689

    Article  PubMed  CAS  Google Scholar 

  54. Truettner JS, Alonso OF, Dietrich WD (2005) Influence of therapeutic hypothermia on matrix metalloproteinase activity after traumatic brain injury in rats. J Cereb Blood Flow Metab 25:1505–1516

    Article  PubMed  CAS  Google Scholar 

  55. Jia F, Pan YH, Mao Q, Liang YM, Jiang JY (2010) Matrix metalloproteinase-9 expression and protein levels after fluid percussion injury in rats: the effect of injury severity and brain temperature. J Neurotrauma 27(6):1059–1068

    Article  PubMed  Google Scholar 

  56. Truettner JS, Suzuki T, Dietrich WD (2005) The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res 138(2):124–134

    Article  PubMed  CAS  Google Scholar 

  57. Truettner JS, Alonso OF, Bramlett HM, Dietrich WD (2011) Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. J Cereb Blood Flow Metab 31(9):1897–1907

    Article  PubMed  CAS  Google Scholar 

  58. Lotocki G, de Rivero Vaccari JP, Perez ER, Alonso OF, Curbelo K, Keane RW, Dietrich WD (2006) Therapeutic hypothermia modulates TNFR1 signaling in the traumatized brain via early transient activation of the JNK pathway and suppression of XIAP cleavage. Eur J Neurosci 24:2283–2290

    Article  PubMed  Google Scholar 

  59. De Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29(7):1251–1261

    Article  PubMed  Google Scholar 

  60. Tomura S, de Rivero Vaccari JP, Keane RW, Bramlett HM, Dietrich WD (2012) Effects of therapeutic hypothermia on inflammasome signaling after traumatic brain injury. J Cereb Blood Flow Metab 32(10):1939–1947

    Article  PubMed  CAS  Google Scholar 

  61. Kochanek PM, Bramlett H, Dietrich WD, Dixon CE, Hayes RL, Povlishock J, Tortella FC, Wang KK (2011) A novel multicenter preclinical drug screening and biomarker consortium for experimental traumatic brain injury: operation brain trauma therapy. J Trauma 71(1 Suppl):S15–S24

    Article  PubMed  Google Scholar 

  62. Adamczak S, Dale G, de Rivero Vaccari JP, Bullock MR, Dietrich WD, Keane RW (2012) Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome. J Neurosurg 117(6):1119–1125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jeremy Lytle for his editorial assistance. This work was supported by grants NIH NS030291, NS042133, NS056072, and a Veterans Affairs grant BX000521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Dalton Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dietrich, W.D., Bramlett, H.M. (2014). Vascular Actions of Hypothermia in Brain Trauma. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics