Skip to main content

Radiobiological Principles Underlying Stereotactic Radiation Therapy

  • Chapter
Principles and Practice of Stereotactic Radiosurgery

Abstract

We review the radiobiological principles underlying stereotactic radiation therapy (SRT) and their clinical applications to single- and multi-fraction radiotherapy—both for malignant tumors, benign tumors, and vascular disorders. The classic radiobiological phenomena of repair, reoxygenation, and repopulation (the three Rs) are discussed, as well as their relationship to cell death, a clearly important mechanism by which radiotherapy produces both tumor control and normal tissue complications. Mechanistic models of radiotherapeutic response are useful for calculating isoeffect relationships for alternate fractionation schemes and for understanding the underlying biophysical mechanisms of radiation response. The linear–quadratic (LQ) formalism, which models the three Rs, is now almost universally used for isoeffect calculations of different fractionation and protraction schemes. While other radiobiological mechanisms at high doses per fraction have been shown in the laboratory, there is to date no clinical evidence of their relevance to SRT response, and the LQ model appears to be appropriate for use at all the doses and fractionation schemes of relevance to SRT. Rather than new biological mechanisms, recent analyses of clinical data suggest that the great success of SRT is primarily related to its improved conformal dose delivery that permits significant escalation of the biologically effective doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 (The termstereotactic radiation therapywill be used here to apply both to single-fraction treatment (often called radiosurgery) and to multi-fraction stereotactic radiotherapy (often called stereotactic body radiation therapy when applied to extracranial sites). There is still debate about the most appropriate terminology [24]).

References

  1. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–95.

    CAS  PubMed  Google Scholar 

  2. Lunsford LD, Flickinger JC, Larson D. Regarding: Rosenthal DI, Glatstein E. “We’ve got a treatment, but what’s the disease?” The Oncologist 1996;1. Oncologist. 1997;2(1):59–61.

    PubMed  Google Scholar 

  3. Adler Jr JR, Colombo F, Heilbrun MP, Winston K. Toward an expanded view of radiosurgery. Neurosurgery. 2004;55(6):1374–6.

    Article  PubMed  Google Scholar 

  4. Loo BW, Chang JY, Dawson LA, Kavanagh BD, Koong AC, Senan S, et al. Stereotactic ablative radiotherapy: what’s in a name? Pract Radiat Oncol. 2011;1(1):38–9.

    Article  PubMed  Google Scholar 

  5. Colombo F, Benedetti A, Pozza F, Avanzo RC, Marchetti C, Chierego G, et al. External stereotactic irradiation by linear accelerator. Neurosurgery. 1985;16(2):154–60.

    Article  CAS  PubMed  Google Scholar 

  6. Houdek PV, Fayos JV, Van Buren JM, Ginsberg MS. Stereotaxic radiotherapy technique for small intracranial lesions. Med Phys. 1985;12(4):469–72.

    Article  CAS  PubMed  Google Scholar 

  7. Chen JC, Rahimian J, Girvigian MR, Miller MJ. Contemporary methods of radiosurgery treatment with the Novalis linear accelerator system. Neurosurg Focus. 2007;23(6):E4. Epub 2007/12/18.

    Article  PubMed  Google Scholar 

  8. Dhabaan A, Elder E, Schreibmann E, Crocker I, Curran WJ, Oyesiku NM, et al. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery. J Appl Clin Med Phys. 2010;11(3):3040. Epub 2010/08/19.

    PubMed  Google Scholar 

  9. Roa DE, Schiffner DC, Zhang J, Dietrich SN, Kuo JV, Wong J, et al. The use of RapidArc volumetric-modulated arc therapy to deliver stereotactic radiosurgery and stereotactic body radiotherapy to intracranial and extracranial targets. Med Dosim. 2012;37(3):257–64. Epub 2012/03/01.

    Article  PubMed  Google Scholar 

  10. Adler Jr JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.

    Article  PubMed  Google Scholar 

  11. Chen CC, Chapman P, Petit J, Loeffler J. Proton radiosurgery in neurosurgery. Neurosurg Focus. 2007;23(6):E5. Epub 2007/12/18.

    Article  PubMed  Google Scholar 

  12. Halasz LM, Bussiere MR, Dennis ER, Niemierko A, Chapman PH, Loeffler JS, et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys. 2011;81(5):1428–35. Epub 2010/10/12.

    Article  PubMed  Google Scholar 

  13. Zimmermann F, Wulf J, Lax I, Nagata Y, Timmerman RD, Stojkovski I, et al. Stereotactic body radiation therapy for early non-small cell lung cancer. Front Radiat Ther Oncol. 2010;42:94–114. Epub 2009/12/04.

    Article  PubMed  Google Scholar 

  14. Schwade JG, Houdek PV, Landy HJ, Bujnoski JL, Lewin AA, Abitol AA, et al. Small-field stereotactic external-beam radiation therapy of intracranial lesions: fractionated treatment with a fixed-halo immobilization device. Radiology. 1990;176(2):563–5.

    Article  CAS  PubMed  Google Scholar 

  15. Souhami L, Olivier A, Podgorsak EB, Villemure JG, Pla M, Sadikot AF. Fractionated stereotactic radiation therapy for intracranial tumors. Cancer. 1991;68(10):2101–8.

    Article  CAS  PubMed  Google Scholar 

  16. Simonova G, Novotny J, Novotny Jr J, Vladyka V, Liscak R. Fractionated stereotactic radiotherapy with the Leksell Gamma Knife: feasibility study. Radiother Oncol. 1995;37(2):108–16. Epub 1995/11/01.

    Article  CAS  PubMed  Google Scholar 

  17. Regine WF, Patchell RA, Strottmann JM, Meigooni A, Sanders M, Young B. Combined stereotactic split-course fractionated gamma knife radiosurgery and conventional radiation therapy for unfavorable gliomas: a phase I study. J Neurosurg. 2000;93 Suppl 3:37–41. Epub 2001/01/06.

    PubMed  Google Scholar 

  18. Higuchi Y, Serizawa T, Nagano O, Matsuda S, Ono J, Sato M, et al. Three-staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int J Radiat Oncol Biol Phys. 2009;74(5):1543–8. Epub 2009/01/13.

    Article  PubMed  Google Scholar 

  19. Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81(1):18–24. Epub 2006/09/19.

    Article  PubMed  Google Scholar 

  20. Narayana A, Chang J, Yenice K, Chan K, Lymberis S, Brennan C, et al. Hypofractionated stereotactic radiotherapy using intensity-modulated radiotherapy in patients with one or two brain metastases. Stereotact Funct Neurosurg. 2007;85(2–3):82–7. Epub 2006/12/15.

    Article  PubMed  Google Scholar 

  21. Mori Y, Hashizume C, Kobayashi T, Shibamoto Y, Kosaki K, Nagai A. Stereotactic radiotherapy using Novalis for skull base metastases developing with cranial nerve symptoms. J Neurooncol. 2010;98(2):213–9. Epub 2010/04/21.

    Article  PubMed  Google Scholar 

  22. Matsuyama T, Kogo K, Oya N. Clinical outcomes of biological effective dose-based fractionated stereotactic radiation therapy for metastatic brain tumors from non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85:984–90. Epub 2012/10/25.

    Article  PubMed  Google Scholar 

  23. Hattangadi JA, Chapman PH, Bussiere MR, Niemierko A, Ogilvy CS, Rowell A, et al. Planned two-fraction proton beam stereotactic radiosurgery for high-risk inoperable cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys. 2012;83(2):533–41. Epub 2011/11/22.

    Article  PubMed  Google Scholar 

  24. Gill SS, Thomas DG, Warrington AP, Brada M. Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys. 1991;20(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  25. Kooy HM, Dunbar SF, Tarbell NJ, Mannarino E, Ferarro N, Shusterman S, et al. Adaptation and verification of the relocatable Gill-Thomas-Cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 1994;30(3):685–91.

    Article  CAS  PubMed  Google Scholar 

  26. Kamath R, Ryken TC, Meeks SL, Pennington EC, Ritchie J, Buatti JM. Initial clinical experience with frameless radiosurgery for patients with intracranial metastases. Int J Radiat Oncol Biol Phys. 2005;61(5):1467–72.

    Article  PubMed  Google Scholar 

  27. Verellen D, Soete G, Linthout N, Van Acker S, De Roover P, Vinh-Hung V, et al. Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol. 2003;67(1):129–41. Epub 2003/05/22.

    Article  PubMed  Google Scholar 

  28. Overgaard J, Horsman MR. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol. 1996;6(1):10–21.

    Article  PubMed  Google Scholar 

  29. Rijken PF, Peters JP, Van der Kogel AJ. Quantitative analysis of varying profiles of hypoxia in relation to functional vessels in different human glioma xenograft lines. Radiat Res. 2002;157(6): 626–32.

    Article  CAS  PubMed  Google Scholar 

  30. Powers WE, Tolmach LJ. A multicomponent x-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature. 1963;197:710–1.

    Article  CAS  PubMed  Google Scholar 

  31. Leith JT, Cook S, Chougule P, Calabresi P, Wahlberg L, Lindquist C, et al. Intrinsic and extrinsic characteristics of human tumors relevant to radiosurgery: comparative cellular radiosensitivity and hypoxic percentages. Acta Neurochir Suppl. 1994;62:18–27.

    Article  CAS  PubMed  Google Scholar 

  32. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2000.

    Google Scholar 

  33. Carlson DJ, Stewart RD, Semenenko VA. Effects of oxygen on intrinsic radiation sensitivity: a test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med Phys. 2006;33(9):3105–15. Epub 2006/10/07.

    Article  CAS  PubMed  Google Scholar 

  34. Carlson DJ, Keall PJ, Loo Jr BW, Chen ZJ, Brown JM. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys. 2011;79(4):1188–95. Epub 2010/12/25.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Carlson DJ, Yenice KM, Orton CG. Tumor hypoxia is an important mechanism of radioresistance in hypofractionated radiotherapy and must be considered in the treatment planning process. Med Phys. 2011;38(12):6347–50. Epub 2011/12/14.

    Article  PubMed  Google Scholar 

  36. Brenner DJ, Hall EJ. Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys. 1991;20(1):181–90.

    Article  CAS  PubMed  Google Scholar 

  37. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.

    Article  CAS  PubMed  Google Scholar 

  38. Thames HD, Hendry JH. Fractionation in radiotherapy. London: Taylor & Francis; 1987. p. ix, 297.

    Google Scholar 

  39. Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W. Fractionation parameters for human tissues and tumors. Int J Radiat Biol. 1989;56(5):701–10.

    Article  CAS  PubMed  Google Scholar 

  40. Withers HR, Thames Jr HD, Flow BL, Mason KA, Hussey DH. The relationship of acute to late skin injury in 2 and 5 fraction/week gamma-ray therapy. Int J Radiat Oncol Biol Phys. 1978;4(7–8):595–601.

    Article  CAS  PubMed  Google Scholar 

  41. Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988;27(2):131–46.

    Article  CAS  PubMed  Google Scholar 

  42. Brenner DJ. Accelerated repopulation during radiotherapy—evidence for delayed onset. Radiat Oncol Invest. 1993;1:167–72.

    Article  Google Scholar 

  43. Slevin NJ, Hendry JH, Roberts SA, Agren-Cronqvist A. The effect of increasing the treatment time beyond three weeks on the control of T2 and T3 laryngeal cancer using radiotherapy. Radiother Oncol. 1992;24(4):215–20.

    Article  CAS  PubMed  Google Scholar 

  44. Dasu A, Fowler JF. Comments on “Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer”. Phys Med Biol. 2005;50(6):L1–4; author reply L5–8. Epub 2006/09/28.

    Google Scholar 

  45. Saunders MI, Dische S, Grosch EJ, Fermont DC, Ashford RF, Maher EJ, et al. Experience with CHART. Int J Radiat Oncol Biol Phys. 1991;21(3):871–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hall EJ, Brenner DJ. The radiobiology of radiosurgery: rationale for different treatment regimes for AVMs and malignancies. Int J Radiat Oncol Biol Phys. 1993;25(2):381–5.

    Article  CAS  PubMed  Google Scholar 

  47. Loeffler JS, Kooy HM, Wen PY, Fine HA, Cheng CW, Mannarino EG, et al. The treatment of recurrent brain metastases with stereotactic radiosurgery. J Clin Oncol. 1990;8(4):576–82.

    CAS  PubMed  Google Scholar 

  48. Ogilvy CS. Radiation therapy for arteriovenous malformations: a review. Neurosurgery. 1990;26(5):725–35.

    Article  CAS  PubMed  Google Scholar 

  49. Friedman WA, Bova FJ. Radiosurgery for arteriovenous malformations. Neurol Res. 2011;33(8):803–19. Epub 2011/10/19.

    Article  PubMed  Google Scholar 

  50. Barr JC, Ogilvy CS. Selection of treatment modalities or observation of arteriovenous malformations. Neurosurg Clin N Am. 2012;23(1):63–75. Epub 2011/11/24.

    Article  PubMed  Google Scholar 

  51. See AP, Raza S, Tamargo RJ, Lim M. Stereotactic radiosurgery of cranial arteriovenous malformations and dural arteriovenous fistulas. Neurosurg Clin N Am. 2012;23(1):133–46. Epub 2011/11/24.

    Article  PubMed  Google Scholar 

  52. Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med. 1983;309(5):269–74.

    Article  CAS  PubMed  Google Scholar 

  53. Marks LB, Spencer DP. The influence of volume on the tolerance of the brain to radiosurgery. J Neurosurg. 1991;75(2):177–80.

    Article  CAS  PubMed  Google Scholar 

  54. Nedzi LA, Kooy H, Alexander III E, Gelman RS, Loeffler JS. Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys. 1991;21(3):591–9.

    Article  CAS  PubMed  Google Scholar 

  55. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.

    Article  CAS  PubMed  Google Scholar 

  56. Wowra B, Schmitt HP, Sturm V. Incidence of late radiation necrosis with transient mass effect after interstitial low dose rate radiotherapy for cerebral gliomas. Acta Neurochir (Wien). 1989; 99(3–4):104–8.

    Article  CAS  Google Scholar 

  57. Touboul E, Al Halabi A, Buffat L, Merienne L, Huart J, Schlienger M, et al. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration. Int J Radiat Oncol Biol Phys. 1998;41(4):855–61.

    Article  CAS  PubMed  Google Scholar 

  58. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD. An analysis of the dose-response for arteriovenous malformation radiosurgery and other factors affecting obliteration. Radiother Oncol. 2002;63(3):347–54.

    Article  PubMed  Google Scholar 

  59. Kocher M, Wilms M, Makoski HB, Hassler W, Maarouf M, Treuer H, et al. Alpha/beta ratio for arteriovenous malformations estimated from obliteration rates after fractionated and single-dose irradiation. Radiother Oncol. 2004;71(1):109–14.

    Article  PubMed  Google Scholar 

  60. Mayer A, Hockel M, Wree A, Leo C, Horn LC, Vaupel P. Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res. 2008;68(12):4719–26. Epub 2008/06/19.

    Article  CAS  PubMed  Google Scholar 

  61. Shrieve DC, Hazard L, Boucher K, Jensen RL. Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg. 2004;101 Suppl 3:390–5.

    PubMed  Google Scholar 

  62. Goldsmith BJ, Rosenthal SA, Wara WM, Larson DA. Optic neuropathy after irradiation of meningioma. Radiology. 1992;185(1): 71–6.

    Article  CAS  PubMed  Google Scholar 

  63. Bhandare N, Monroe AT, Morris CG, Bhatti MT, Mendenhall WM. Does altered fractionation influence the risk of radiation-induced optic neuropathy? Int J Radiat Oncol Biol Phys. 2005;62(4):1070–7.

    Article  PubMed  Google Scholar 

  64. Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58(690):515–28.

    Article  CAS  PubMed  Google Scholar 

  65. Lea DE. Actions of radiation on living cells. Cambridge: University Press; 1946.

    Google Scholar 

  66. Sachs RK, Hahnfeld P, Brenner DJ. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. Int J Radiat Biol. 1997;72(4): 351–74.

    Article  CAS  PubMed  Google Scholar 

  67. Ellis F. Is NSD-TDF useful to radiotherapy? Int J Radiat Oncol Biol Phys. 1985;11(9):1685–97.

    Article  CAS  PubMed  Google Scholar 

  68. Turesson I, Notter G. Skin reaction as a biological parameter for prospective studies of different dose schedules with the CRE formula. Bull Cancer. 1976;63(1):11–26.

    CAS  PubMed  Google Scholar 

  69. Bates TD, Peters LJ. Dangers of the clinical use of the NSD formula for small fraction numbers. Br J Radiol. 1975;48(573):773.

    Article  CAS  PubMed  Google Scholar 

  70. Peters LJ, Withers HR. Morbidity from large dose fractions in radiotherapy. Br J Radiol. 1980;53(626):170–1.

    Article  CAS  PubMed  Google Scholar 

  71. Gerweck LE, Zaidi ST, Zietman A. Multivariate determinants of radiocurability. I: prediction of single fraction tumor control doses. Int J Radiat Oncol Biol Phys. 1994;29(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  72. Brown M, Bristow R, Glazer P, Hill R, McBride W, McKenna G, et al. Comment on “Tumor response to radiotherapy regulated by endothelial cell apoptosis” (II). Science. 2003;302(5652):1894; author reply.

    Google Scholar 

  73. Carlson DJ, Stewart RD, Semenenko VA, Sandison GA. Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. Radiat Res. 2008;169(4):447–59. Epub 2008/03/28.

    Article  CAS  PubMed  Google Scholar 

  74. Preston RJ. Mechanisms of induction of specific chromosomal alterations. Basic Life Sci. 1990;53:329–36.

    CAS  PubMed  Google Scholar 

  75. Wlodek D, Hittelman WN. The relationship of DNA and chromosome damage to survival of synchronized X-irradiated L5178Y cells. II. Repair. Radiat Res. 1988;115(3):566–75.

    Article  CAS  PubMed  Google Scholar 

  76. Savage JR. A brief survey of aberration origin theories. Mutat Res. 1998;404(1–2):139–47.

    Article  CAS  PubMed  Google Scholar 

  77. Lea DE, Catcheside DG. The mechanism of the induction by radiation of chromosome aberrations in tradescantia. J Genet. 1942;44:216–45.

    Article  Google Scholar 

  78. Kellerer AM, Rossi HH. The theory of dual radiation action. Curr Top Radiat Res. 1972;8:85–158.

    CAS  Google Scholar 

  79. Frankenberg D, Brede HJ, Schrewe UJ, Steinmetz C, Frankenberg-Schwager M, Kasten G, et al. Induction of DNA double-strand breaks by 1H and 4He lons in primary human skin fibroblasts in the LET range of 8 to 124 keV/microm. Radiat Res. 1999;151(5):540–9.

    Article  CAS  PubMed  Google Scholar 

  80. Frankenberg-Schwager M. Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells. Radiat Environ Biophys. 1990;29(4):273–92.

    Article  CAS  PubMed  Google Scholar 

  81. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A. 2003;100(9):5057–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Sutherland BM, Bennett PV, Schenk H, Sidorkina O, Laval J, Trunk J, et al. Clustered DNA damages induced by high and low LET radiation, including heavy ions. Phys Med. 2001;17 Suppl 1:202–4.

    PubMed  Google Scholar 

  83. Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol. 1985;47(3):319–39.

    CAS  Google Scholar 

  84. Brenner DJ, Huang Y, Hall EJ. Fractionated high dose-rate versus low dose-rate regimens for intracavitary brachytherapy of the cervix: equivalent regimens for combined brachytherapy and external irradiation. Int J Radiat Oncol Biol Phys. 1991;21(6):1415–23.

    Article  CAS  PubMed  Google Scholar 

  85. Wang JZ, Li XA, D’Souza WD, Stewart RD. Impact of prolonged fraction delivery times on tumor control: a note of caution for intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys. 2003;57(2):543–52. Epub 2003/09/06.

    Article  PubMed  Google Scholar 

  86. Carlson DJ, Stewart RD, Li XA, Jennings K, Wang JZ, Guerrero M. Comparison of in vitro and in vivo alpha/beta ratios for prostate cancer. Phys Med Biol. 2004;49(19):4477–91. Epub 2004/11/24.

    Article  PubMed  Google Scholar 

  87. Webb S, Nahum AE. A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol. 1993;38(6):653–66. Epub 1993/06/01.

    Article  CAS  PubMed  Google Scholar 

  88. Tome WA, Fowler JF. On the inclusion of proliferation in tumour control probability calculations for inhomogeneously irradiated tumours. Phys Med Biol. 2003;48(18):N261–8. Epub 2003/10/08.

    Article  PubMed  Google Scholar 

  89. Keall PJ, Webb S. Optimum parameters in a model for tumour control probability, including interpatient heterogeneity: evaluation of the log-normal distribution. Phys Med Biol. 2007;52(1):291–302. Epub 2006/12/22.

    Article  CAS  PubMed  Google Scholar 

  90. Fowler JF, Ritter MA, Chappell RJ, Brenner DJ. What hypofractionated protocols should be tested for prostate cancer? Int J Radiat Oncol Biol Phys. 2003;56(4):1093–104.

    Article  PubMed  Google Scholar 

  91. Prevost JB, Voet P, Hoogeman M, Praag J, Levendag P, Nuyttens JJ. Four-dimensional stereotactic radiotherapy for early stage non-small cell lung cancer: a comparative planning study. Technol Cancer Res Treat. 2008;7(1):27–34.

    Article  PubMed  Google Scholar 

  92. Brenner DJ, Martel MK, Hall EJ. Fractionated regimens for stereotactic radiotherapy of recurrent tumors in the brain. Int J Radiat Oncol Biol Phys. 1991;21(3):819–24.

    Article  CAS  PubMed  Google Scholar 

  93. Brenner DJ. The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol. 2008;18(4):234–9.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Bartkowiak D, Hogner S, Nothdurft W, Rottinger EM. Cell cycle and growth response of CHO cells to X-irradiation: threshold-free repair at low doses. Int J Radiat Oncol Biol Phys. 2001;50(1): 221–7.

    Article  CAS  PubMed  Google Scholar 

  95. Garcia LM, Leblanc J, Wilkins D, Raaphorst GP. Fitting the linear-quadratic model to detailed data sets for different dose ranges. Phys Med Biol. 2006;51(11):2813–23.

    Article  CAS  PubMed  Google Scholar 

  96. Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8(11):1981–97.

    Article  CAS  PubMed  Google Scholar 

  97. van der Kogel AJ. Chronic effects of neutrons and charged particles on spinal cord, lung, and rectum. Radiat Res Suppl. 1985;8:S208–16.

    Article  PubMed  Google Scholar 

  98. Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66(2):401–26.

    Article  CAS  PubMed  Google Scholar 

  99. Peck JW, Gibbs FA. Mechanical assay of consequential and primary late radiation effects in murine small intestine: alpha/beta analysis. Radiat Res. 1994;138(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  100. Taylor JM, Kim DK. The poor statistical properties of the Fe-plot. Int J Radiat Biol. 1989;56(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  101. de Boer RW. The use of the D versus dD plot to estimate the alpha/beta ratio from iso-effect radiation damage data. Radiother Oncol. 1988;11(4):361–7.

    Article  PubMed  Google Scholar 

  102. Tucker SL. Tests for the fit of the linear-quadratic model to radiation isoeffect data. Int J Radiat Oncol Biol Phys. 1984;10(10): 1933–9.

    Article  CAS  PubMed  Google Scholar 

  103. Ling CC, Chen CH, Fuks Z. An equation for the dose response of radiation-induced apoptosis: possible incorporation with the LQ model. Radiother Oncol. 1994;33(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  104. Brenner DJ, Hlatky LR, Hahnfeldt PJ, Huang Y, Sachs RK. The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships. Radiat Res. 1998;150(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  105. Curtis SB. Lethal and potentially lethal lesions induced by radiation–a unified repair model. Radiat Res. 1986;106(2): 252–70.

    Article  CAS  PubMed  Google Scholar 

  106. Hawkins RB. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. Int J Radiat Biol. 1996;69(6):739–55.

    Article  CAS  PubMed  Google Scholar 

  107. Obaturov GM, Moiseenko VV, Filimonov AS. Model of mammalian cell reproductive death. I. Basic assumptions and general equations. Radiat Environ Biophys. 1993;32(4):285–94.

    Article  CAS  PubMed  Google Scholar 

  108. Tobias CA. The repair-misrepair model in radiobiology: comparison to other models. Radiat Res Suppl. 1985;8:S77–95.

    Article  CAS  PubMed  Google Scholar 

  109. Zaider M. There is no mechanistic basis for the use of the linear-quadratic expression in cellular survival analysis. Med Phys. 1998;25(5):791–2.

    Article  CAS  PubMed  Google Scholar 

  110. Sachs RK, Brenner DJ. The mechanistic basis of the linear-quadratic formalism. Med Phys. 1998;25(10):2071–3.

    Article  CAS  PubMed  Google Scholar 

  111. Kiefer J. A repair fixation model. In: Kiefer J, editor. Quantitative mathematical models in radiation biology. New York: Springer; 1988.

    Chapter  Google Scholar 

  112. Haynes RH. The interpretation of microbial inactivation and recovery phenomena. Radiat Res. 1966;(Suppl 6):1–29.

    Google Scholar 

  113. Laurie J, Orr JS, Foster CJ. Repair processes and cell survival. Br J Radiol. 1972;45(533):362–8.

    Article  CAS  PubMed  Google Scholar 

  114. Reddy NM, Mayer PJ, Lange CS. The saturated repair kinetics of Chinese hamster V79 cells suggests a damage accumulation–interaction model of cell killing. Radiat Res. 1990;121(3): 304–11.

    Article  CAS  PubMed  Google Scholar 

  115. Sontag W. A cell survival model with saturable repair after irradiation. Radiat Environ Biophys. 1987;26(1):63–79.

    Article  CAS  PubMed  Google Scholar 

  116. Ward JF, Limoli CL, Calabro-Jones PM, Aguilera J. An examination of the repair saturation hypothesis for describing shouldered survival curves. Radiat Res. 1991;127(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  117. Kirkpatrick JP, Meyer JJ, Marks LB. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery. Semin Radiat Oncol. 2008;18(4):240–3. Epub 2008/08/30.

    Article  PubMed  Google Scholar 

  118. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300(5622): 1155–9. Epub 2003/05/17.

    Article  CAS  PubMed  Google Scholar 

  119. Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484–90. Epub 2008/02/01.

    Article  PubMed  Google Scholar 

  120. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. Epub 2012/03/09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Hiniker SM, Chen DS, Knox SJ. Abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(21):2035; author reply 2036. Epub 2012/05/25.

    Google Scholar 

  122. Brown JM, Koong AC. High-dose single-fraction radiotherapy: exploiting a new biology? Int J Radiat Oncol Biol Phys. 2008;71(2):324–5. Epub 2008/05/14.

    Article  PubMed  Google Scholar 

  123. Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not “new biology,” can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;85(5):1159–60.

    Article  PubMed Central  PubMed  Google Scholar 

  124. Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88(2):254–62.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Mehta N, King CR, Agazaryan N, Steinberg M, Hua A, Lee P. Stereotactic body radiation therapy and 3-dimensional conformal radiotherapy for stage I non-small cell lung cancer: a pooled analysis of biological equivalent dose and local control. Pract Radiat Oncol. 2012;2:288–95.

    Article  PubMed  Google Scholar 

  126. Lo SS, Fakiris AJ, Chang EL, Mayr NA, Wang JZ, Papiez L, et al. Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol. 2010;7(1):44–54. Epub 2009/12/10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Brenner Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brenner, D.J., Carlson, D.J. (2015). Radiobiological Principles Underlying Stereotactic Radiation Therapy. In: Chin, L., Regine, W. (eds) Principles and Practice of Stereotactic Radiosurgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8363-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8363-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8362-5

  • Online ISBN: 978-1-4614-8363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics