Skip to main content

Phenotyping in Sorghum [Sorghum bicolor (L.) Moench]

  • Chapter
  • First Online:
Phenotyping for Plant Breeding

Abstract

Sorghum is one of the most important cereal crops grown in the semi-arid tropics (SAT) of Asia, Africa and Americas for its food, feed, fodder and fuel value. Sorghum production is constrained by several biotic and abiotic stresses. Genetic enhancement of sorghum for grain and stover yield, nutritional quality and plant defense traits (abiotic and biotic) which stabilize the crop performance requires thorough knowledge on crop genetic and crop breeding principles. Rapid progress in biotechnology provided powerful and cost-effective molecular/genomic tools to develop desired products in sorghum. However, development of robust and efficient phenotyping methods for traits of interest is critical to make use of these new tools. There is no publication with efficient phenotyping protocols for sorghum research compiled at one place for use by sorghum workers. This book chapter is an attempt to fill that gap and we hope various phenotyping methods discussed hereunder will be useful to sorghum researchers in developing improved products by using them in combination with appropriate breeding/genomic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Aruna C, Audilakshmi S (2008) Breeding methods in sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 28–30

    Google Scholar 

  • Audilakshmi S, Aruna C (2008) Breeding methods in sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 28–30

    Google Scholar 

  • Bandyopadhyay R, Mughogho LK, Rao KEP et al (1988) Sources of resistance to sorghum grain molds. Plant Dis 72:504–508

    Article  Google Scholar 

  • Bergquist RR (2000) Leaf blight. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases. American Phytopathological Society, St. Paul, pp 9–10

    Google Scholar 

  • Blum A (1988) Drought resistance in plant breeding for stress environments. CRC, Boca Raton, pp 43–78

    Google Scholar 

  • Blümmel M, Vishala A, Ravi D, Prasad KVSV, Ramakrishna Reddy C, Seetharama N (2010) Multi-environmental investigations of food-feed trait relationships in Kharif and Rabi sorghum (Sorghum bicolor (L) Moench) over several years of cultivars testing in India. Anim Nutr Feed Technol 10S(1):11–21

    Google Scholar 

  • Celarier RP (1959) Cytotaxonomy of the Andropogonea. III. Sub-tribe Sorgheae, genus, sorghum. Cytologia 23:395–418

    Article  Google Scholar 

  • Clayton WD (1961) Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum adans (Gramineae). Taxonomy 10:242

    Article  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum grasses of the world. Kew bulletin addition series, vol XIII. Royal Botanic Gardens, Kew, pp 338–345

    Google Scholar 

  • Cooper PJM, Rao KPC, Singh P, Dimes J, Traore PS, Rao K, Dixit P, Twomlow SJ (2009) Farming with current and future climate risk: advancing a ‘Hypothesis of Hope’ for rain-fed agriculture in the Semi-Arid Tropics. J SAT Agric Res 7

    Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg JA (2000) Classification and characterization of sorghum. In: Smith CW, Frederiksen RA (eds) Sorghum, origin, history, technology and production. Wiley Series in Crop Science. Wiley, New York, pp 99–130

    Google Scholar 

  • Dang K, Anand M, Jotwani MG (1970) A simple improved diet for artificial rearing of sorghum stem borer, Chilo partellus (Swinhoe). Indian J Entomol 32:130–133

    Google Scholar 

  • De Mesa-Stonestreet NJ, Alavi S, Bean SR (2010) Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J Food Sci 75:90–104

    Article  Google Scholar 

  • de Wet JMJ, Harlan JR (1971) The origin and domestication of Sorghum bicolor. Econ Bot 25: 128–135

    Article  Google Scholar 

  • de Wet JMJ, Huckabay JP (1967) The origin of Sorghum bicolor. II. Distribution and domestication. Evolution 211:787–802

    Article  Google Scholar 

  • Deu M, Grivet L, Trouche G, Barro C, Ratnadass A, Diabate M, Hamada A, Fliedel G, Rami JF, Grenier C, Hamon P, Glaszmann JC, Chantereau J (2000) Use of molecular markers in the sorghum breeding program at CIRAD. In: Haussmann BIG, Greiger HH, Hess DE, Hash CT, Bramel-Cox P (eds) Application of molecular markers in plant breeding, training manual on seminar held at IITA, Ibadan, 6–17 August 1999

    Google Scholar 

  • Devi P, Zhong H, Sticklen M (2004) Production of transgenic sorghum plants with related HVA1 gene. In: Seetharama N, Godwin I (eds) Oxford & IBH Publishing Co. Pvt. Ltd, New Delhi, pp 75–79

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Tropical agricultural series. Longman Scientific, Essex

    Google Scholar 

  • Dubey RS (1994) Protein synthesis by plants under stressful conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 277–299

    Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42(2):233–239

    Google Scholar 

  • Ejeta G (2007) The Striga scourge in Africa: a growing pandemic. In: Ejeta G, Gressel J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. pp. 3–16 (Chapter 1)

    Google Scholar 

  • Ejeta G, Butler LG, Babiker AGT (1992) New approaches to the control of Striga. In: Ejeta G, Butler LG, Babiker AGT (eds) Striga research at Purdue Bulletin. pp 11–13

    Google Scholar 

  • Ejeta G, Mohamed A, Rich P, Melake-Berhan A, Housley TL, Hess DE (2000) In: Haussmann IG, Hess DE, Koyama ML, Grivet L, Rattunde HFW, Geiger HH (eds) Breeding for Striga resistance in cereals. MargrafVerlag, Weikersheim

    Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361

    Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK, Swathisree V, Sivarama Prasad L, Bhat BV, Royer M, Secundo BS, Narsu ML, Altosaar I, Seetharama N (2005) Development of transgenic sorghum for insect resistance against the spotted stem boere (Chilo partellus). Plant Cell Rep 24: 513–522

    Article  PubMed  CAS  Google Scholar 

  • Gourley LM (1988) Breeding sorghum for acid soils of the humid tropics. In: Lathan M (ed) Africaland-Land development and management of acid soils in Africa II. Inter Board for Soils Research and Management (IBSRAM), Bangkok, pp 261–273

    Google Scholar 

  • Gourley LM, Watson CE, Schaffert RE, Payne WA (1997) Genetic resistance to soil chemical toxicities and deficiencies. In: International conference on genetic improvement of sorghum and pearl millet, INTSORMIL and ICRISAT, Lubbock, 22–27 September 1996, pp 461–480

    Google Scholar 

  • Harlan JR, de Wet JMJ (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172

    Article  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NY (2002) Genetic mapping of Sorghum bicolor (L.) Moench: QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 3:1232–1242

    Google Scholar 

  • Haug A (1984) Molecular aspects of aluminium tolerance. Crit Rev Plant Sci 1:345

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbreed populations. Theor Appl Genet 106:133–142

    PubMed  CAS  Google Scholar 

  • Hennessy GG, de Milliano WAJ, McLaren CG (1990) Influence of primary weather variables on sorghum leaf blight severity in southern Africa. Phytopathology 80:943–945

    Article  Google Scholar 

  • Hess DE, Ejeta G, Butler LG (1992) Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to Striga. Phytochemistry 31:493–497

    Article  CAS  Google Scholar 

  • Houk RS (1986) Anal Chem 58:97A

    Google Scholar 

  • House LR (1980) A guide to sorghum breeding. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • House LR (1985) A guide to sorghum breeding, 2nd edn. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 165

    Google Scholar 

  • Howarth CI (1989) Heat shock proteins in Sorghum bicolor and Pennisetum americanum I. Genotypical and developmental variation during seed germination. Plant Cell Environ 12:471–477

    Article  CAS  Google Scholar 

  • IBPGR/ICRISAT (1980) Sorghum descriptors. IBPGR, Rome

    Google Scholar 

  • Igartua E, Gracia MP, Lasa JM (1994) Characterization and genetic control of germination, emergence responses of grain sorghum to salinity. Euphytica 76(3):185–193

    Article  Google Scholar 

  • International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) (1992) The medium term plan. Part II. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru

    Google Scholar 

  • Jambunathan R, Rao NS, Gurtu S (1983) Rapid methods for estimating protein and lysine in sorghum (Sorghum bicolor (L.) Moench). Cereal Chem 60(3):192–194

    CAS  Google Scholar 

  • Johnson RM, Craney CE (1971) Rapid biuret method for protein content in grains. Cereal Chem 48:276

    CAS  Google Scholar 

  • Jordan WR, Sullivan CY (1982) Reaction and resistance of grain sorghum to heat and drought. In: Sorghum in the eighties. Proceedings of the international symposium on Sorghum, ICRISAT, Patancheru, 2–7 November 1981, pp 131–142

    Google Scholar 

  • Jotwani MG (1978) Investigations on insect pests of sorghum and millets with special reference to host plant resistance. Final Technical Report (1972 77). Research Bulletin of the Division of Entomology. Indian Agricultural Research Institute, New Delhi, 114 pp

    Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Khizzah BW, Miller FR, Newton RJ (1993) Inheritance and heritability of heat tolerance in several sorghum cultivars during the reproductive phase. Afr Crop Sci J 1(suppl 2):81–85

    Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mold incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Reddy BVS, Serraj R et al (2003) Screening sorghum germplasm for tolerance to soil salinity. Int Sorg Mill Newslett 44:90–92

    Google Scholar 

  • Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BVS (2007) Screening sorghum genotypes for salinity tolerant biomass production. Euphytica 156:15–24

    Article  Google Scholar 

  • Krishnaveni S, Jeoung JM, Muthukrishnan S, Liang GH (2001) Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J Genet Breed 55:151–158

    CAS  Google Scholar 

  • Kumar VK, Sharma HC, Reddy KD (2005) Antibiosis component of resistance to spotted stem borer, Chilo partellus in sorghum, Sorghum bicolor. Crop Prot 25:66–72

    Article  Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Reddy PS, Sahrawat KL, Upadhyaya HD (2009) Genetic variability and plant character association of grain Fe and Zn in selected core collections of sorghum germplasm and breeding lines. J SAT Agric Res. http://www.icrisat.org/journal/

  • Kumar AA, Reddy BVS, Blümmel M, Anandan S, Reddy YR, Reddy CR, Rao PS, Reddy PS (2010) On-farm evaluation of elite sweet sorghum genotypes for grain and stover yields and fodder quality. Anim Nutr Feed Technol 10S:69–78

    Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Sahrawat KL, Wolfgang HP (2013) Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Research 146:86–95

    Google Scholar 

  • Kumar AA, Reddy BVS, Sharma HC, Hash CT, Srinivasa Rao P, Ramaiah B, Reddy PS (2011a) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2: 589–600

    Article  Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Sharma R (2011b) Heterosis in white-grained grain mold resistant sorghum hybrids. J SAT Agric Res 9

    Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Sahrawat KL, Wolfgang HP (2012) Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur J Plant Sci Biotechnol 6(1):66–70

    Google Scholar 

  • Lu Q (1994) RFLP techniques and sorghum breeding. In: Witcombe JR, Duncan RR (eds) Use of molecular markers in sorghum and pearl millet breeding for developing countries. Proceedings of an ODA plant sciences research programme conference, Norwich, 29 March–1 April 1993, pp 15–16

    Google Scholar 

  • Macharia JM, Kamau J, Gituanja JN, Matu EW et al (1994) Effects of sodium salinity on seed germination and seedling root and soot extension of four sorghum [Sorghum bicolor (L.) Moench] cultivars. Int Sorg Mill Newslett 35:124–125

    Google Scholar 

  • Maheswari M, Varalakshmi Y, Vijayalakshmi A, Yadav SK, Jodha E, Venkateswarlu B, Vanaja, M, Parthasarathi P (2006) Metabolic engineering for enhancing abiotic stress tolerance in sorghum with mtld gene. In: The proceedings of international symposium on frontiers in genetics and biotechnology retrospect and prospects, at Osmania University, Hyderabad, 8–10 January 2006

    Google Scholar 

  • Maiti R (1996) Sorghum science. Oxford & IBH, New Delhi, p 352

    Google Scholar 

  • Maiti RK, de la Rosa AL et al (1994) Evaluation of several sorghum genotypes for salinity tolerance. Int Sorg Mill Newslett 35:121

    Google Scholar 

  • Marley PS, Thakur RP, Ajayi O (2001) Variation among foliar isolates of Colletotrichumsublineolumof sorghum in Nigeria. Field Crops Res 69:133–142

    Article  Google Scholar 

  • Mohamed AH, Housley TL, Ejeta G et al (2010) An in vitro technique for studying specific Striga resistance mechanisms in sorghum. Afr J Agric Res 5(14):1868–1875

    Google Scholar 

  • Moses KAL, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10(19):3659–3670

    Google Scholar 

  • Mughogho LK, Pande S (1984) Charcoal rot of sorghum. In: Sorghum root and stalk rots – a critical review: proceedings of the consultative group discussion on research needs and strategies for control of sorghum root and stalk rot diseases, Bellagio, 27 November–2 December 1983. ICRISAT, Patancheru, pp 11–24

    Google Scholar 

  • Nagy Z, Tuba Z, Zsoldus F, Erdei L (1995) CO2 exchange and water retention responses of sorghum and maize during water and salt stress. J Plant Physiol 145:539–544

    Article  CAS  Google Scholar 

  • Obilana AT (1980) Yield loss and reaction of sorghum F1 crosses to striga, Striga hermonthica Benth. In: Proceedings of 10th annual conference of the Weed Science Society of Nigeria, NIFOR, Benin City, 2–5 December 1980 (Abstract)

    Google Scholar 

  • Page FD (1979) Resistance to sorghum midge (Contarinia sorghicola Coquillett) in grain sorghum. Aust J Exp Agric Anim Husbandry 19:97–101

    Google Scholar 

  • Paterson AH (1994) Status of genome mapping in sorghum and prospects for marker-associated selection in sorghum improvement. Int Sorghum Millet Newslett 35:89–91

    Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants—molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (l) pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin Y, Li Z (1998) Case history in plant domestication: sorghum an example of cereal evolution. In: Paterson AH (ed) Molecular dissection of complex traits. International drought symposium, Nairobi, 19–23 May 1998. CRC, Boca Raton, pp 101–120

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Peacock JM (1982) Response and tolerance of sorghum to temperature stress. In: House LR et al (eds) Sorghum in the eighties. Proceedings of the international symposium on Sorghum, ICRISAT, Patancheru, 2–7 November 1981, pp 143–160

    Google Scholar 

  • Peacock JM, Soman P, Jayachandran R et al (1993) Effects of high soil surface temperature on seedling survival in pearl millet. Exp Agric 29:215–225

    Article  Google Scholar 

  • Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic mapping of quantitative trait loci for panicle characteristics and seed weight in sorghum. Rev Bras Genet 18:249–257

    CAS  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. In: Norman AG (ed) Advances in agronomy, vol 19. Academic, New York., pp 267–305

    Google Scholar 

  • Quinby JR, Karper RE (1947) The effect of short photoperiod on sorghum varieties and first generation hybrids. J Agric Res 75:295–300

    Google Scholar 

  • Ramesh B, Hudda MPS (1994) Study on variability and associations involving protein content, amino acids and grain yield in sorghum. Indian J Genet Plant Breed 54(1):37–44

    CAS  Google Scholar 

  • Ramesh S, Reddy BVS, Reddy PS, Hebbar M, Ibrahim M et al (2005) Response of selected sorghum lines to soil salinity-stress under field conditions. Int Sorg Mill Newslett 46:14–17

    Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Reddy BVS, Ashok Kumar A (2008) Population improvement in sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A and Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 93–104

    Google Scholar 

  • Reddy KVS, Davies JC (1979) A new medium for mass rearing of sorghum stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae) and its use in resistance screening. Indian J Plant Protect 6:48–55

    Google Scholar 

  • Reddy BVS, Rangel AF, Iglesias CA, Bernal JH (2000) Evaluation of sorghum and pearl millet for acid-soil tolerance in the Oriental Llanos of Colombia. In: Reddy BVS, Cellabos H, Ortiz R (eds) Proceedings of workshop on “A Research and Network Strategy for Sustainable Sorghum and Pearl Millet Production Systems for Latin America”, Villavicencio, Meta, 24–26 November 1998. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, and Centro Internacional de Agicultura Tropical (CIAT), Cali, pp 37–45

    Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T et al (2005) Prospects of breeding for micronutrients and carotene-dense sorghums. Int Sorg Mill Newslett 46:10–14

    Google Scholar 

  • Reddy BVS, Sharma HC, Thakur RP, Ramesh S, Kumar AA (2007) Characterization of ICRISAT-Bred Sorghum Hybrid Parents. ISMN 48:1–123

    Google Scholar 

  • Reddy BVS, Ramesh S, Kumar AA, Wani SP, Ortiz R, Ceballos H, Sreedevi TK (2008) Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res 1:248–258

    Article  Google Scholar 

  • Reddy BVS, Ramesh S, Reddy PS, Kumar AA (2009) Genetic enhancement for drought tolerance in sorghum. Plant Breed Rev 31:189–222

    Article  CAS  Google Scholar 

  • Reddy BVS, Kumar AA, Reddy PS (2010a) Recent advances in sorghum improvement research at ICRISAT. Kasetsart J (Nat Sci) 44:499–506

    CAS  Google Scholar 

  • Reddy BVS, Kumar AA, Reddy PS, Ibrahim M, Ramaiah B, Dakheel AJ, Ramesh S, Krishnamurthy L (2010b) Cultivar options for salinity tolerance in sorghum. J SAT Agric Res 8:1. http://www.icrisat.org/journal/

  • Reddy BVS, Kumar AA, Ramesh S, Reddy PS (2011) Breeding sorghum for coping with climate change. In: Yadav SS, Redden B, Hatfield JL, Lotze-Campen H (eds) Crop adaptation to climate change. Wiley, Iowa, pp 326–339

    Google Scholar 

  • Rodriguez-Herrera R, Waniska RD, Rooney WL (1999) Antifungal proteins and grain mold resistance in sorghum with a non-pigmented testa. J Agric Food Chem 47:4802–4806

    Article  PubMed  CAS  Google Scholar 

  • Rooney WL (2004) Sorghum improvement – integrating traditional and new technology to produce improved genotypes. Adv Agron 83:38–110

    Google Scholar 

  • Rooney WL, Klein RR (2000) Potential of marker-assisted selection for improving grain mold resistance in sorghum. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (eds) Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, Patancheru, 18–19 May 2000, pp 183–194

    Google Scholar 

  • Sajjanar GM (2002) Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata) in sorghum [Sorghum bicolor (L.) Moench.]. PhD Thesis. University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Mohan SM, Seetharama N et al (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 119:1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Schaffert RE, McCrate AJ, Trevisan WL, Bueno A, Meira JL, Rhykerd CL (1975) Genetic variation in Sorghum bicolor (L.) Moench for tolerance to high levels of exchangeable aluminium in acid soils of Brazil. In: Proceedings of sorghum workshop, University of Puerto Rico, Mayaguez, Puerto Rico, pp 151–160

    Google Scholar 

  • Seetharama N, Reddy BVS, Peacock JM et al (1982) Sorghum improvement for drought resistance in crops with emphasis on rice. International Rice Research Institute (IRRI), Los Banos, Laguna, pp 317–338

    Google Scholar 

  • Seetharama N, Mythili PK, Rani TS, Harshavardhan D, Ranjani A, Sharma HC (2003) Tissue culture and alien gene transfer in sorghum. In: Jaiwal PK, Singh R (eds) Plant genetic engineering: improvement of food crops, vol 2. Sci Tech Publishing, New Delhi, pp 235–265

    Google Scholar 

  • Setimela PS, Andrews DJ, Eskridge KM et al (2007) Genetic evaluation of seedling heat tolerance in sorghum. Afr Crop Sci J 15(1):33–42

    Google Scholar 

  • Sharma HC (1985) Future strategies for pest control in sorghum in India. Trop Pest Manag 31: 167–185

    Article  Google Scholar 

  • Sharma D (1988) Concepts and methods. In: Chopra VL (ed) Plant breeding. Oxford & IBH, New Delhi, pp 21–74

    Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma HC, Lopez VF (1990) Biology and population dynamics of sorghum head bugs (Hemiptera: Miridae). Crop Prot 9:164–173

    Article  Google Scholar 

  • Sharma HC, Lopez VF (1992) Screening for plant resistance to sorghum head bug, Calocoris angustatus Leth. Insect Sci Appl 13:315–325

    Google Scholar 

  • Sharma HC, Nwanze KF (1997) Mechanisms of resistance to insects in sorghum and their usefulness in crop improvement. Information Bulletin no. 45. ICRISAT, Patancheru, 51 pp

    Google Scholar 

  • Sharma HC, Vidyasagar P, Leuschner K (1988a) Field screening sorghum for resistance to sorghum midge (Cecidomyiidae: Diptera). J Econ Entomol 81:327–334

    Google Scholar 

  • Sharma HC, Vidyasagar P, Leuschner K (1988b) No choice cage technique to screen for resistance to sorghum midge (Cecidomyiidae: Diptera). J Econ Entomol 81:415–422

    Google Scholar 

  • Sharma HC, Taneja SL, Leuschner K, Nwanze KF (1992a) Techniques to screen sorghum for resistance to insects. Information Bulletin no. 32. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 48 pp

    Google Scholar 

  • Sharma HC, Doumbia YO, Diorisso NY (1992b) A headcage technique to screen sorghum for resistance to the mired head bug, Eurystylus immaculatus Odh.in West Africa. Insect Sci Appl 13:417–427

    Google Scholar 

  • Sharma HC, Taneja SL, Rao NK, Rao PKE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin no. 63. ICRISAT, Patancheru, 184 pp

    Google Scholar 

  • Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum germplasm. Plant Dis 94:439–444.3

    Article  Google Scholar 

  • Sharma R, Thakur RP, Senthilvel S, Nayak S, Reddy SV, Rao VP, Varshney RK et al (2011) Identification and characterization of toxigenic Fusaria associated with sorghum grain mold complex in India. Mycopathologia 171:223–230

    Article  PubMed  Google Scholar 

  • Singh BU, Rao KV, Sharma HC (2010) Comparison of selection indices to identify sorghum genotypes resistant to the spotted stem borer Chilo partellus (Lepidoptera: Noctuidae). Int J Trop Insect Sci 31:38–51

    Article  Google Scholar 

  • Soto PE (1972) Mass rearing of sorghum shoot fly and screening for host plant resistance under greenhouse conditions. In: Jotwani MG, Young WR (eds) Proceedings of the international symposium on control of sorghum shoot fly. Oxford and IBH, New Delhi, pp 137–138

    Google Scholar 

  • Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000a) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43: 461–469

    Article  PubMed  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000b) Quantitative trait loci for the stay green train in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Sullivan CY, Blum A (1970) Drought and heat resistance in sorghum and corn. In: Proceedings of the 25th annual corn sorghum research conference, Wichita, pp 55–56

    Google Scholar 

  • Taneja SL, Leuschner K (1985a) Methods of rearing, infestation, and evaluation for Chilo partellus resistance in sorghum. In: Proceedings, international sorghum entomology workshop, 15–21 July 1984, Texas A&M University, College Station. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 178–185

    Google Scholar 

  • Taneja SL, Leuschner K (1985b) Resistance screening and mechanisms of resistance in sorghum to shoot fly. In: Proceedings of the international sorghum entomology workshop, Texas A&M University, College Station, 15–21 July 1984. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 115–129

    Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tool for an old science. Biotechnology 7:257–264

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1125–1232

    Google Scholar 

  • Thakur RP, Rao VP, Navi SS, Garud TB, Agarkar GD, Bhat B (2003) Sorghum grain mold: variability in fungal complex. Int Sorg Mill Newslett 44:104–108

    Google Scholar 

  • Thakur RP, Reddy BVS, Indira S, Rao VP, Navi SS, Yang XB, Ramesh S (2006) Sorghum Grain Mold. Information Bulletin No. 72. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Thakur RP, Reddy BVS, Mathur K (2007) Screening techniques for sorghum diseases. Information Bulletin No. 76. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Thomas GL, Miller FR (1979) Base temperature for germination of temperate and tropically adapted sorghum. In: Proc. biennial grain sorghum res. and utilization com., 11 February–2 March 1979, Grain Sorghum Producers Association, Lubbock, p 24

    Google Scholar 

  • CIMMYT (Centro Internacional de Mejoramiento de Maiz y Trigo) (1977) CIMMYT review. Centro Internacional de Mejoramiento de Maiz y Trigo, El Batan, 99 pp

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbroughm PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Valério HM, Resende MA, Weikert-Oliveira RCB, Casela CR et al (2005) Virulence and molecular diversity in Colletotrichumgraminicolafrom Brazil. Mycopathologia 159:449–459

    Article  PubMed  Google Scholar 

  • Virupaksha TK, Sastry LVS (1968) Protein content and amino acid composition of some varieties of grain sorghum. J Agric Food Chem 16(2):199–203

    Article  CAS  Google Scholar 

  • Visarada KBRS (2008) Development and testing of transgenics in sorghum. In: Reddy BVS, Ramesh S, Ashok Kumar A, Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 202–205

    Google Scholar 

  • Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath E, Rao SV, Seetharama N (2004) Evolving transgenic sorghum resistant to stem borer with suitable Bt gene constructs. Research Project report funded by Andhra Pradesh-Netherlands Biotechnology Program at NRC for Sorghum, Hyderabad

    Google Scholar 

  • Wilson GL, Raju PS, Peacock JM et al (1982) Effect of soil temperature on seedling emergence in sorghum. Indian J Agric Sci 52:848–851

    Google Scholar 

  • Wortmann CS, Liska AJ, Ferguson RB, Lyon DJ, Klein RM, Dweikat I (2010) Dryland performance of sweet sorghum and grain crops for biofuel. Agron J 102(1):319–326

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen NT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    PubMed  CAS  Google Scholar 

  • Zhu H, Krishnaveni S, Liang GH, Muthukrishnan S (1998) Biolistic transformation of sorghum using a rice chitinasegene. J Genet Breed 52:243–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Are Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, A.A., Sharma, H.C., Sharma, R., Blummel, M., Reddy, P.S., Reddy, B.V.S. (2013). Phenotyping in Sorghum [Sorghum bicolor (L.) Moench]. In: Panguluri, S., Kumar, A. (eds) Phenotyping for Plant Breeding. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8320-5_3

Download citation

Publish with us

Policies and ethics