Skip to main content

Vitrification of Oocytes: From Basic Science to Clinical Application

  • Chapter
  • First Online:
Oocyte Biology in Fertility Preservation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 761))

Abstract

Vitrification is a physical process by which a liquid is transformed into a solid of amorphous glass form. It was only at the end of the nineteenth century (1898) that Gustav Heinrich Johann Apollon Tammann pointed out that a large number of substances can be obtained as glasses and suggested that this property might be universal (Tammann, Zeitschrift for Physikalische Chemie; 25: 441–479, 1898). Basically, vitrification is the supercooling of a liquid to a temperature at which the viscosity is so high that it can be defined as being at a solid state. The understanding of the vitrification process has been deepened over the years and has been applied for cryopreservation and currently is the method of choice for preserving oocytes and embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36

    Article  PubMed  CAS  Google Scholar 

  • Almodin CG, Minguetti-Camara VC, Paixao CL, Pereira PC (2010) Embryo development and gestation using fresh and vitrified oocytes. Hum Reprod 25:1192–1198

    Article  PubMed  Google Scholar 

  • Arav A (1989) Vitrification of oocytes and embryos. DVM thesis, Bologna University

    Google Scholar 

  • Arav A (1992) Vitrification of oocyte and embryos. In: Lauria A, Gandolfi F (eds) New trends in embryo transfer. Portland Press, Cambridge, England, pp 255–264

    Google Scholar 

  • Arav A, Zeron Y (1997) Vitrification of bovine oocytes using modified minimum drop size technique (MDS) is effected by the composition and the concentration of the vitrification solution and by the cooling conditions. Theriogenology 47(1):341

    Article  Google Scholar 

  • Arav A, Gianaroli L, Suriano P (1988) Titration of vitrification solution in mouse embryo cryopreservation. Cryobiology 6:567

    Article  Google Scholar 

  • Arav A, Carney JN, Pease GR, Liu KL (1994) Recent developments in cryopreservation of stallion semen with special emphasis on thawing procedure using thermal hysteresis proteins. Zygote 2(4):379–382

    Article  PubMed  CAS  Google Scholar 

  • Arav A, Pearl M, Zeron Y (2000) Does lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo Letters 21:179–186

    PubMed  CAS  Google Scholar 

  • Arav A, Yavin S, Zeron Y, Natan Y, Dekel I, Gacitua H (2002) New trend in gamete’s cryopreservation. Mol Cell Endocrinol 187:77–81

    Article  PubMed  CAS  Google Scholar 

  • Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40(2):110–116

    Article  PubMed  CAS  Google Scholar 

  • Bielanski A, Bergeron H, Lau PC, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46(2):146–152

    Article  PubMed  CAS  Google Scholar 

  • Burton EF, Oliver WF (1935) The crystal structure of ice at low temperatures. Proc R Soc Lond A 153:166–172

    Article  CAS  Google Scholar 

  • Camus A, Clairaz P, Ersham A, Van Kappel AL, Savic G, Staub C (2006) Principe de la vitrification: cinétiques comparatives. The comparison of the process of five different vitrification devices. Gynecol Obstet Fertil 34:737–745

    Article  PubMed  CAS  Google Scholar 

  • Carroll J, Depypere H, Matthews CD (1990) Freeze–thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen–thawed mouse oocytes. J Reprod Fertil 90:547–553

    Article  PubMed  CAS  Google Scholar 

  • Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS (2001) Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 16:2350–2356

    Article  PubMed  CAS  Google Scholar 

  • Chen SU, Chien C-L, Wu M-Y, Chen T-H, Lai S-M, Lin C-W, Yang YS (2006) Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod 21:2794–2800

    Article  PubMed  Google Scholar 

  • Chian RC, Son WY, Huang JY, Cui SJ, Buckett WM, Tan SL (2005) High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertil Steril 84:S36 (abstract)

    Article  Google Scholar 

  • Ciotti PM, Porcu E, Notarangelo L, Magrini O, Bazzocchi A, Venturoli S (2009) Meiotic spindle recovery is faster in vitrification of human oocytes ompared to slow freezing. Fertil Steril 91:2399–2407

    Article  PubMed  Google Scholar 

  • Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10(5):268–273

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Mouradian R (1983) Stabilization of biological membranes at low water activities. Cryobiology 20(3):346–356

    Article  PubMed  CAS  Google Scholar 

  • Dinnyes A, Dai Y, Jiang S, Yang X (2000) High developmental rates of vitrified bovine oocytes following parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Biol Reprod 63:513–518

    Article  PubMed  CAS  Google Scholar 

  • Fabbri R, Porcu E, Marsella T, Primavera MR, Rocchetta G, Ciotti PM, Magrini O, Seracchioli R, Venturoli S, Flamigni C (2000) Technical aspects of oocyte cryopreservation. Mol Cell Endocrinol 169:39–42

    Article  PubMed  CAS  Google Scholar 

  • Fahy GM, Rall WF (2007) Vitrification: an overview. In: Liebermann J, Tucker MJ (eds) Vitrification in assisted reproduction: a user’s manual and troubleshooting guide. Informa Healthcare, London

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21(4):407–426

    Article  PubMed  CAS  Google Scholar 

  • Ghetler Y, Yavin S, Shalgi R, Arav A (2005) The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum Reprod 20:3385–3389

    Article  PubMed  CAS  Google Scholar 

  • Gook DA, Osborn SM, Johnston WIH (1993) Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod 8:1101–1109

    PubMed  CAS  Google Scholar 

  • Gupta MK, Uhm SJ, Lee HT (2010) Effect of vitrification and betamercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril 93:2602–2607

    Article  PubMed  Google Scholar 

  • Hamawaki A, Kuwayama M, Hamano S (1999) Minimum volume cooling method for bovine blastocyst vitrification. Theriogenology 51:165

    Article  Google Scholar 

  • Hawkes L (1929) Super-cooled water. Nature 123:244

    Article  CAS  Google Scholar 

  • von Humboldt A, Gay-Lussac JL (1807) Observations sur l’intensité et l’inclinaison des forces magnétiques, faites en France, en Suisse, en Italie et en Allemagne. Mémoires de physique et de chimie de la Société d’Arcueil 1:1–22

    Google Scholar 

  • Isachenko V, Folch J, Isachenko E, Nawroth F, Krivokharchenko A, Vajta G, DattenaM AJL (2003) Double vitrification of rat embryos at different developmental stages using an identical protocol. Theriogenology 60:445–452

    Article  PubMed  Google Scholar 

  • Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T (1990) A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil 89:90–97

    Article  Google Scholar 

  • Kuwayama M, Kato O (2000) All-round vitrification method for human oocytes and embryos. J Assist Reprod Genet 17:477

    Google Scholar 

  • Kuwayama M, Vajta G, Kato O, Leibo SP (2005a) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300–308

    Article  PubMed  Google Scholar 

  • Kuwayama M, Vajta G, Ieda S, Kato O (2005b) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614

    Article  PubMed  Google Scholar 

  • Lane M, Forest KT, Lyons EA, Bavister BD (1999a) Live births following vitrification of hamster embryos using a novel containerless technique. Theriogenology 51:167 (abstract)

    Article  Google Scholar 

  • Lane M, Schoolcraft WB, Gardner DK, Phil D (1999b) Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril 72:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Larman MG, Gardner DK (2010) Vitrifying mouse oocytes and embryos with super-cooled air. Hum Reprod 25:i265

    Article  Google Scholar 

  • Liebermann J, Tucker M, Graham J, Han T, Davis A, Levy M (2002) Blastocyst development after vitrification of multipronuclear zygotes using the felxipet denuding pipette. Reprod Biomed Online 4:146–150

    Article  PubMed  CAS  Google Scholar 

  • Luvoni GC (2000) Current progress on assisted reproduction in dogs and ats: in vitro embryo production. Reprod Nutr Dev 40:505–512

    Article  PubMed  CAS  Google Scholar 

  • Luyet BJ. (1937) The vitrification of organic colloids and of protoplasm. Biodynamica; 1:1–14

    Book  Google Scholar 

  • Luyet BJ, Hodapp A (1938) Revival of frog spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol; 39:433–434

    Book  Google Scholar 

  • Luyet BJ, Gehenio PM (1940) Life and death at low temperatures. Biodynamica, Normandy, MO

    Book  Google Scholar 

  • Massip A, Van der Zwalmen P, Ectors F (1987) Recent progress in cryopreservation of cattle embryos. Theriogenology 27:69–79

    Article  Google Scholar 

  • Matsumoto H, Jiang JY, Tanaka T, Sasada H, Sato E (2001) Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology 42:139–144

    Article  PubMed  CAS  Google Scholar 

  • Martino A, Pollard JW, Leibo SP (1996) Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev; 45(4):503–512

    Article  PubMed  CAS  Google Scholar 

  • Mavrides A, Morroll D (2005) Bypassing the effect of zona pellucida changes on embryo formation following cryopreservation of bovine oocytes. Eur J Obstet Gynecol Reprod Biol 118:66–70

    Article  PubMed  Google Scholar 

  • Mousson A (1858) Einige Tatsachen betreffend das Schmelzen und Gefrieren des Wassers. An Pfyaft 105:161–174

    Google Scholar 

  • Muthukumar K, Mangalaraj AM, Kamath MS, George K (2008) Blastocyst cryopreservation: vitrification or slow freeze. Fertil Steril 90:S426–S427

    Article  Google Scholar 

  • Paffoni A, Guarneri C, Ferrari S, Restelli L, Nicolosi AE, Scarduelli C, Ragni G (2011) Effects of two vitrification protocols on the developmental potential of human mature oocytes. Reprod Biomed Online 22(3):292–298

    Article  PubMed  Google Scholar 

  • Petyim S, Makemahar O, Kunathikom S, Choavaratana R, Laokirkkiat P, Penparkkul K (2009) The successful pregnancy and birth of a healthy baby after human blastocyst vitrification using Cryo-E, first case in Siriraj Hospital. J Med Assoc Thai 92:1116–1121

    PubMed  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    Google Scholar 

  • Portmann M, Nagy ZP, Behr B (2010) Evaluation of blastocyst survival following vitrification/warming using two different closed carrier systems. Hum Reprod 25:i261

    Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature 313(6003):573–575

    Article  PubMed  CAS  Google Scholar 

  • Rall WF, Meyer TK (1989) Zona fracture damage and its avoidance during the cryopreservation of mammalian embryos. Theriogenology 31:683–692

    Article  PubMed  CAS  Google Scholar 

  • Rall WF, Wood MJ, Kirby C, Whittingham DG (1987) Development of mouse embryos cryopreserved by vitrification. J Reprod Fertil 80(2):499–504

    Article  PubMed  CAS  Google Scholar 

  • Rubinsky B, Arav A, DeVries AL (1991) Cryopreservation of oocyte using directional cooling and antifreeze proteins. Cryo Letters 12:93–106

    Google Scholar 

  • Ruffing NA, Steponkus PL, Pitt RE, Parks JE (1993) Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology 30:562–580

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Otoi T, Takagi M, Boediono A, Sumantri C, Suzuki T (1996) Normal calves obtained after direct transfer of vitrified bovine embryos using ethylene glycol, trehalose, and polyvinylpyrrolidone. Cryobiology 32(6):505–510

    Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141(1):1–19

    Article  PubMed  CAS  Google Scholar 

  • Schellander K, Brackett BG, Fuhrer F, Schleger W (1988) In vitro fertilization of frozen-thawed cattle oocytes. In: Proceedings of the 11th Congress on animal reproduction and artificial insemination, 26–30

    Google Scholar 

  • Seki S, Mazur P (2012) Ultra-rapid warming yields high survival of mouse oocytes cooled to −196 °C in dilutions of a standard vitrification solution. PLoS One 7(4):e36058

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama R, Nakagawa K, Shirai A, Sugiyama R, Nishi Y, Kuribayashi Y, Inoue M (2010) Clinical outcomes resulting from the transfer of vitrified human embryos using a new device for cryopreservation (plastic blade). J Assist Reprod Genet 27:161–167

    Article  PubMed  Google Scholar 

  • Sun X, Li Z, Yi Y, Chen J, Leno GH, Engelhardt JF (2008) Efficient term development of vitrified ferret embryos using a novel pipette chamber technique. Biol Reprod 79:832–840

    Article  PubMed  CAS  Google Scholar 

  • Széll A, Shelton JN (1987) Osmotic and cryoprotective effects of glycerol-sucrose solutions on day-3 mouse embryos. J Reprod Fertil 80(1):309–316

    Article  PubMed  Google Scholar 

  • Tammann G (1898) Ueber die abhangkeit der Kernr, welche sich in verschiedenen flussigkeiten bilden, von der temperature. Zeitschrift for Physikalische Chemie 25:441–479

    CAS  Google Scholar 

  • Testart J, Lassalle B, Belaisch-Allart J (1986) High pregnancy rate after early human embryo freezing. Fertil Steril 46:268–272

    PubMed  CAS  Google Scholar 

  • Tsang WH, Chow KL (2009) Mouse embryo cryopreservation utilizing a novel high-capacity vitrification spatula. Biotechniques 46:550–552

    Article  PubMed  CAS  Google Scholar 

  • Vajta G, Holm P, Greve T, Callesen H (1997) Vitrification of porcine embryos using the open pulled straw (OPS) method. Acta Vet Scand 38:349–352

    PubMed  CAS  Google Scholar 

  • Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58

    Article  PubMed  CAS  Google Scholar 

  • Vanderzwalmen P, Bertin G, Debauche C, Standaart V, Schoysman E (2000) In vitro survival of metaphase II oocytes (MII) and blastocysts after vitrification in a hemi-straw (HS) system. Fertil Steril 74:S215–S216 (abstract)

    Article  Google Scholar 

  • Walton JH Jr, Judd RC (1914) The velocity of crystallization of under cooled water. J Phys Chem 18(9):722–728

    Article  CAS  Google Scholar 

  • Yavin S, Arav A (2001) Development of immature bovine oocytes vitrified by minimum drop size technique and a new vitrification apparatus (VIT-MASTER). Cryobiology 43:331

    Google Scholar 

  • Yavin S, Arav A (2007) Measurement of essential physical properties of vitrification solutions. Theriogenology 67(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Yavin S, Aroyo A, Roth Z, Arav A (2009) Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Hum Reprod 24:797–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Prof. Kui Liu for his suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Arav D.V.M, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arav, A., Natan, Y. (2013). Vitrification of Oocytes: From Basic Science to Clinical Application. In: Kim, S. (eds) Oocyte Biology in Fertility Preservation. Advances in Experimental Medicine and Biology, vol 761. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8214-7_6

Download citation

Publish with us

Policies and ethics