Skip to main content

Advanced Modeling of Oxide Defects

  • Chapter
  • First Online:
Bias Temperature Instability for Devices and Circuits

Abstract

During the last couple of years, there is growing experimental evidence which confirms charge trapping as the recoverable component of BTI. The trapping process is believed to be a non-radiative multiphonon (NMP) process, which is also encountered in numerous physically related problems. Therefore, the underlying NMP theory is frequently found as an important ingredient in the youngest BTI reliability models. While several different descriptions of the NMP transitions are available in literature, most of them are not suitable for the application to device simulation. In this chapter, we will present a rigorous derivation that starts out from the microscopic Franck–Condon theory and yields generalized trapping rates accounting for all possible NMP transitions with the conduction and the valence band in the substrate as well as in the poly-gate. Most importantly, this derivation considers the more general quadratic electron–phonon coupling contrary to several previous charge trapping models. However, the pure NMP transitions do not suffice to describe the charge trapping behavior seen in time-dependent defect spectroscopy (TDDS). Inspired by these measurements, we introduced metastable states, which have a strong impact on the trapping dynamics of the investigated defect. It is found that these states provide an explanation for plenty of experimental features observed in TDDS measurements. In particular, they can explain the behavior of fixed as well as switching oxide hole traps, both regularly observed in TDDS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is stressed that the term “hole capture” refers to either a capture of hole from the valence band into a trap or an emission of an electron from the trap into the valence band. Keep in mind that both of these processes are equivalent from a physical point of view.

  2. 2.

    Note that electron emission corresponds to hole capture into the substrate conduction band.

  3. 3.

    Note that the same term “switching trap level” is also used for the thermodynamic trap level for a switching oxide hole trap introduced in Fig. 16.1.

  4. 4.

    Keep in mind that the term “transition” does not refer to the duration of the physical process itself, such as the time it takes an electron to tunnel through an energy barrier. It rather denotes the mean time until the physical process takes place and the defect change its state.

References

  1. K.O. Jeppson and C.M. Svensson, “Negative Bias Stress of MOS Devices at High Electric Fields and Degradation of MNOS Devices,” J.Appl.Phys., vol. 48, no. 5, pp. 2004–2014, 1977.

    Article  Google Scholar 

  2. S. Ogawa and N. Shiono, Phys.Rev.B, vol. 51, no. 7, pp. 4218–4230, 1995.

    Google Scholar 

  3. B. Kaczer, V. Arkhipov, R. Degraeve, N. Collaert, G. Groeseneken, and M. Goodwin, “Disorder-Controlled-Kinetics Model for Negative Bias Temperature Instability and its Experimental Verification,” in Proc.IRPS, 2005, pp. 381–387.

    Google Scholar 

  4. S. Zafar, “Statistical Mechanics Based Model for Negative Bias Temperature Instability Induced Degradation,” J.Appl.Phys., vol. 97, no. 10, pp. 1–9, 2005.

    Article  Google Scholar 

  5. M. Houssa, M. Aoulaiche, S. De Gendt, G. Groeseneken, M.M. Heyns, and A. Stesmans, “Reaction-Dispersive Proton Transport Model for Negative Bias Temperature Instabilities,” Appl.Phys.Lett., vol. 86, no. 9, pp. 1–3, 2005.

    Article  Google Scholar 

  6. M.A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, “A Comprehensive Model for pMOS NBTI Degradation: Recent Progress,” Microelectron.Reliab., vol. 47, no. 6, pp. 853–862, 2007.

    Article  Google Scholar 

  7. S. Chakravarthi, A.T. Krishnan, V. Reddy, C.F. Machala, and S. Krishnan, “A Comprehensive Framework for Predictive Modeling of Negative Bias Temperature Instability,” in Proc.IRPS, 2004, pp. 273–282.

    Google Scholar 

  8. T. Grasser, W. Goes, and B. Kaczer, “Towards Engineering Modeling of Negative Bias Temperature Instability,” in Defects in Microelectronic Materials and Devices, D. Fleetwood, R. Schrimpf, and S. Pantelides, Eds., pp. 1–30. Taylor and Francis/CRC Press, 2008.

    Google Scholar 

  9. F. Schanovsky and T. Grasser (2013) On the microscopic limit of the RD model. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  10. F. Schanovsky and T. Grasser, “On the Microscopic Limit of the Reaction-Diffusion Model for Negative Bias Temperature Instability,” in Proc.IIRW, 2011, pp. 17–21.

    Google Scholar 

  11. F. Schanovsky and T. Grasser, “On the Microscopic Limit of the Modified Reaction-Diffusion Model for Negative Bias Temperature Instability,” in Proc.IRPS, 2012, pp. XT.10.1–6.

    Google Scholar 

  12. B. Kaczer, T. Grasser, J. Martin-Martinez, E. Simoen, M. Aoulaiche, Ph.J. Roussel, and G. Groeseneken, “NBTI from the Perspective of Defect States with Widely Distributed Time Scales,” in Proc.IRPS, 2009, pp. 55–60.

    Google Scholar 

  13. H. Reisinger, T. Grasser, and C. Schlünder, “A Study of NBTI by the Statistical Analysis of the Properties of Individual Defects in pMOSFETs,” in Proc.IIRW, 2009, pp. 30–35.

    Google Scholar 

  14. T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, Phys.Rev.B, vol. 82, no. 24, pp. 245318, 2010.

    Google Scholar 

  15. P.-J. Wagner, T. Grasser, H. Reisinger, and B. Kaczer, “Oxide Traps in MOS Transistors: Semi-Automatic Extraction of Trap Parameters from Time Dependent Defect Spectroscopy,” in Proc.IPFA, 2010, pp. 249–254.

    Google Scholar 

  16. T. Grasser, H. Reisinger, P.-J. Wagner, F. Schanovsky, W. Goes, and B. Kaczer, “The Time Dependent Defect Spectroscopy (TDDS) for the Characterization of the Bias Temperature Instability,” in Proc.IRPS, 2010, pp. 16 –25.

    Google Scholar 

  17. H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The Statistical Analysis of Individual Defects Constituting NBTI and its Implications for Modeling DC- and AC-Stress,” in Proc.IRPS, 2010, pp. 7–15.

    Google Scholar 

  18. B. Kaczer, T. Grasser, Ph.J. Roussel, J. Franco, R. Degraeve, L.A. Ragnarsson, E. Simoen, G. Groeseneken, and H. Reisinger, “Origin of NBTI Variability in Deeply Scaled PFETs,” in Proc.IRPS, 2010, pp. 1095–1098.

    Google Scholar 

  19. H. Reisinger (2013) The time dependent defect spectroscopy. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

  20. V. Huard, C. Parthasarathy, N. Rallet, C. Guerin, M. Mammase, D. Barge, and C. Ouvrard, “New Characterization and Modeling Approach for NBTI Degradation from Transistor to Product Level,” in Proc.IEDM, 2007, pp. 797–800.

    Google Scholar 

  21. T.L. Tewksbury, Relaxation Effects in MOS Devices due to Tunnel Exchange with Near-Interface Oxide Traps, Ph.D. Thesis, MIT, 1992.

    Google Scholar 

  22. I. Lundstrom and C. Svensson, “Tunneling to Traps in Insulators,” J.Appl.Phys., vol. 43, no. 12, pp. 5045–5047, 1972.

    Article  Google Scholar 

  23. F.P. Heiman and G. Warfield, “The Effects of Oxide Traps on the MOS Capacitance,” IEEE Trans.Elect.Dev., vol. 12, no. 4, pp. 167–178, 1965.

    Article  Google Scholar 

  24. S. Christensson, I. Lundström, and C. Svensson, “Low Frequency Noise in MOS Transistors — I Theory,” Sol.-St.Electr., vol. 11, pp. 797–812, 1968.

    Google Scholar 

  25. W. Shockley and W.T. Read, Phys.Rev., vol. 87, no. 5, pp. 835–842, 1952.

    Google Scholar 

  26. A.L. McWhorter, “1/f Noise and Germanium Surface Properties,” in Sem.Surf.Phys. RH Kingston (Univ Penn Press), 1957.

    Google Scholar 

  27. M.J. Kirton and M.J. Uren, “Noise in Solid-State Microstructures: A New Perspective on Individual Defects, Interface States, and Low-Frequency (1/f) Noise,” Adv.Phys., vol. 38, no. 4, pp. 367–486, 1989.

    Article  Google Scholar 

  28. M. Masuduzzaman, A.E. Islam, and M.A. Alam, “Exploring the Capability of Multifrequency Charge Pumping in Resolving Location and Energy Levels of Traps Within Dielectric,” IEEE Elect.Dev.Let., vol. 55, no. 12, pp. 3421–3431, 2008.

    Article  Google Scholar 

  29. A. Avellan, D. Schroeder, and W. Krautschneider, “Modeling Random Telegraph Signals in the Gate Current of Metal-Oxide-Semiconductor Field Effect Transistors after Oxide Breakdown,” J.Appl.Phys., vol. 94, no. 1, pp. 703–708, 2003.

    Article  Google Scholar 

  30. M. Isler and D. Liebig, Phys.Rev.B, vol. 61, no. 11, pp. 7483–7488, 2000.

    Google Scholar 

  31. N. Zanolla, D. Siprak, P. Baumgartner, E. Sangiorgi, and C. Fiegna, “Measurement and Simulation of Gate Voltage Dependence of RTS Emission and Capture Time Constants in MOSFETs,” in Ultimate Integration of Silicon, 2008, pp. 137–140.

    Google Scholar 

  32. R.R. Siergiej, M.H. White, and N.S. Saks, “Theory and Measurement of Quantization Effects on Si − SiO2 Interface Trap Modeling,” Sol.-St.Electr., vol. 35, no. 6, pp. 843–854, 1992.

    Article  Google Scholar 

  33. N.B. Lukyanchikova, M.V. Petrichuk, N.P. Garbar, E. Simoen, and C. Claeys, “Influence of the Substrate Voltage on the Random Telegraph Signal Parameters in Submicron n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors under a Constant Inversion Charge Density,” Appl.Phys.A, vol. 70, no. 3, pp. 345–353, 2000.

    Article  Google Scholar 

  34. S. Makram-Ebeid and M. Lannoo, Phys.Rev.B, vol. 25, no. 10, pp. 6406–6424, 1982.

    Google Scholar 

  35. S.D. Ganichev, W. Prettl, and I.N. Yassievich, “Deep Impurity-Center Ionization by Far-Infrared Radiation,” Phys.Solid State, vol. 39, no. 1, pp. 1703–1726, 1997.

    Article  Google Scholar 

  36. S.D. Ganichev, I.N. Yassievich, V.I. Perel, H. Ketterl, and W. Prettl, Phys.Rev.B, vol. 65, pp. 085203, 2002.

    Google Scholar 

  37. K. Huang and A. Rhys, “Theory of Light Absorption and Non-Radiative Transitions in F-Centres,” Proceedings of the Royal Society of London. Series A, vol. 204, pp. 406–423, 1950.

    Article  MATH  Google Scholar 

  38. C.H. Henry and D.V. Lang, Phys.Rev.B, vol. 15, no. 2, pp. 989–1016, 1977.

    Google Scholar 

  39. K.V. Mikkelsen and M.A. Ratner, “Electron Tunneling in Solid-State Electron-Transfer Reactions,” Chemical Reviews, vol. 87, no. 1, pp. 113–153, 1987.

    Article  Google Scholar 

  40. Conley and Lenahan, “Electron Spin Resonance Evidence that E γ ′ Centers Can Behave as Switching Traps,” IEEE Trans.Nucl.Sci., vol. 42, no. 6, pp. 1744–1749, 1995.

    Google Scholar 

  41. J.F. Conley Jr., P.M. Lenahan, A.J. Lelis, and T.R. Oldham, “Electron Spin Resonance Evidence for the Structure of a Switching Oxide Trap: Long Term Structural Change at Silicon Dangling Bond Sites in SiO2,” Appl.Phys.Lett., vol. 67, no. 15, pp. 2179–2181, 1995.

    Article  Google Scholar 

  42. A.J. Lelis and T.R. Oldham, “Time Dependence of Switching Oxide Traps,” IEEE Trans.Nucl.Sci., vol. 41, no. 6, pp. 1835–1843, 1994.

    Article  Google Scholar 

  43. M. Lax, “The Franck-Condon Principle and Its Application to Crystals,” Journ.Chem.Phys., vol. 20, no. 11, pp. 1752–1760, 1952.

    Article  MathSciNet  Google Scholar 

  44. T.H. Keil, Phys.Rev., vol. 140, no. 2A, pp. A601–A617, 1965.

    Google Scholar 

  45. F. Schanovsky, O. Baumgartner, V. Sverdlov, and T. Grasser, “A Multi Scale Modeling Approach to Non-Radiative Multi Phonon Transitions at Oxide Defects in MOS Structures,” Journ. of Computational Electronics, vol. 11, no. 3, pp. 218–224, 2012.

    Article  Google Scholar 

  46. S. Datta, Quantum Transport — Atom to Transistor, Cambridge University Press, 2005.

    Google Scholar 

  47. M.O. Andersson, Z. Xiao, S. Norrman, and O. Engström, “Model Based on Trap-Assisted Tunneling for Two-Level Current Fluctuations in Submicrometer Metal-Silicon-Dioxide Diodes,” Phys.Rev.B, vol. 41, no. 14, pp. 9836–9842, 1990.

    Article  Google Scholar 

  48. P.E. Blöchl and J.H. Stathis, “Hydrogen Electrochemistry and Stress-Induced Leakage Current in Silica,” Phys.Rev.Lett., vol. 83, no. 2, pp. 372–375, 1999.

    Article  Google Scholar 

  49. P.E. Blöchl and J.H. Stathis, “Aspects of Defects in Silica Related to Dielectric Breakdown of Gate Oxides in MOSFETs,” Phys.B, vol. 273-274, pp. 1022–1026, 1999.

    Google Scholar 

  50. W.B. Fowler, J.K. Rudra, M.E. Zvanut, and F.J. Feigl, Phys.Rev.B, vol. 41, no. 12, pp. 8313–8317, 1990.

    Google Scholar 

  51. W. Goes and T. Grasser, “First-Principles Investigation on Oxide Trapping,” in Proc.SISPAD, 2007, pp. 157–160.

    Google Scholar 

  52. W. Goes and T. Grasser, “Charging and Discharging of Oxide Defects in Reliability Issues,” in Proc.IIRW, 2007, pp. 27–32.

    Google Scholar 

  53. W. Goes, M. Karner, V. Sverdlov, and T. Grasser, “Charging and Discharging of Oxide Defects in Reliability Issues,” IEEE Trans.Dev.Mater.Rel., vol. 8, no. 3, pp. 491–500, 2008.

    Article  Google Scholar 

  54. A. Alkauskas and A. Pasquarello, “Alignment of Hydrogen-Related Defect Levels at the Si − SiO2 Interface,” Phys.B Condens.Matter, vol. 401–402, pp. 546–549, 2007.

    Google Scholar 

  55. T. Grasser, “Stochastic Charge Trapping in Oxides: From Random Telegraph Noise to Bias Temperature Instabilities,” Microelectron.Reliab., vol. 52, no. 1, pp. 39–70, 2012.

    Article  Google Scholar 

  56. O.C. Ibe, Markov Processes for Stochastic Modeling, Academic Press, 2009.

    Google Scholar 

  57. M. Bina, O. Triebl, B. Schwarz, M. Karner, B. Kaczer, and T. Grasser, “Simulation of Reliability on Nanoscale Devices,” in Proc.SISPAD, 2012, pp. 109–112.

    Google Scholar 

  58. B. Kaczer, J. Franco, M. Toledano-Luque, Ph.J. Roussel, M.F. Bukhori, A. Asenov, B. Schwarz, M. Bina, T. Grasser, and G. Groeseneken, “The Relevance of Deeply-Scaled FET Threshold Voltage Shifts for Operation Lifetimes,” in Proc.IRPS, 2012.

    Google Scholar 

  59. A. Asenov, “Random Dopant-Induced Threshold Voltage Lowering and Fluctuations in Sub-0.1 μm MOSFET’s: A 3-D “Atomistic” Simulation Study,” IEEE Trans.Elect.Dev., vol. 45, no. 12, pp. 2505–2513, 1998.

    Article  Google Scholar 

  60. A. Mauri, N. Castellani, C.M. Compagnoni, A. Ghetti, P. Cappelletti, A.S. Spinelli, and A.L. Lacaita, “Impact of Atomistic Doping and 3D Electrostatics on the Variability of RTN Time Constants in Flash Memories,” in Proc.IEDM, 2011, pp. 17.1.1–17.1.4.

    Google Scholar 

  61. N. Sano, K. Matsuzawa, M. Mukai, and N. Nakayama, “On Discrete Random Dopant Modeling in Drift-Diffusion Simulations: Physical Meaning of “Atomistic” Dopants,” Microelectron.Reliab., vol. 42, no. 2, pp. 189–199, 2002.

    Article  Google Scholar 

  62. A. Asenov, G. Slavcheva, A.R. Brown, J.H. Davies, and S. Saini, “Increase in the Random Dopant-Induced Threshold Fluctuations and Lowering in Sub-100 nm MOSFETs due to Quantum Effects: a 3-D Density-Gradient Simulation Study,” IEEE Trans.Elect.Dev., vol. 48, no. 4, pp. 722–729, 2001.

    Article  Google Scholar 

  63. S.M. Amoroso (2013) Statistical study of bias temperature instabilities by means of 3D ‘atomistic’ simulation. In: T. Grasser (eds) Bias temperature instability for devices and circuits. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the Austrian Science Fund (FWF) project n 23390-N24 and the European Communities FP7 n 261868 (MORDRED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Goes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goes, W., Schanovsky, F., Grasser, T. (2014). Advanced Modeling of Oxide Defects. In: Grasser, T. (eds) Bias Temperature Instability for Devices and Circuits. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7909-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7909-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7908-6

  • Online ISBN: 978-1-4614-7909-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics