Skip to main content

Intraoperative Optical Imaging

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

During surgery, disease is often detected by visual inspection alone. Inherently, surgical vision is limited however to superficial contrast. In addition, the human eye can recognize anatomical structures, but it is not able to detect molecular-based features. Human vision can be enhanced via the use of targeted and nontargeted fluorescent agents, which can reveal otherwise invisible disease biomarkers.

While the introduction of a new therapeutic agent into clinical use needs to undergo time- and cost-demanding processes, careful selection of lead candidates can shift the paradigm in surgical intervention. This chapter describes the development and applications of fluorescence imaging in surgery, including preclinical and clinical examples. We discuss clinical results employing targeted fluorochromes, which exemplify the potential of fluorescence molecular imaging in humans. A strategy to select best targets and facilitate clinical translation is discussed. Finally the broad possibilities and future perspectives of optical guided surgery using multispectral optoacoustic tomography (MOST) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore GE. Fluorescein as an agent in the differentiation of normal and malignant tissues. Science. 1947;106(2745):130–1.

    Article  CAS  PubMed  Google Scholar 

  2. Stummer W, Reulen HJ, Novotny A, et al. Fluorescence-guided resections of malignant gliomas – an overview. Acta Neurochir Suppl. 2003;88:9–12.

    CAS  PubMed  Google Scholar 

  3. Haglund MM, Berger MS, Hochman DW. Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery. 1996;38(2):308–17.

    Article  CAS  PubMed  Google Scholar 

  4. Kremer P, Wunder A, Sinn H, et al. Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: experimental and preliminary clinical results. Neurol Res. 2000;22(5):481–9.

    CAS  PubMed  Google Scholar 

  5. Kircher MF, Mahmood U, King RS, et al. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 2003;63(23):8122–5.

    CAS  PubMed  Google Scholar 

  6. Adusumilli PS, Stiles BM, Chan MK, et al. Real-time diagnostic imaging of tumors and metastases by use of a replication-competent herpes vector to facilitate minimally invasive oncological surgery. FASEB J. 2006;20(6):726–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Eisenberg DP, Adusumilli PS, Hendershott KJ, et al. Real-time intraoperative detection of breast cancer axillary lymph node metastases using a green fluorescent protein-expressing herpes virus. Ann Surg. 2006;243(6):824–30; discussion 830–2.

    Article  PubMed  Google Scholar 

  8. Tanaka E, Choi HS, Fujii H, et al. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol. 2006;13(12):1671–81.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sato K, Nariai T, Sasaki S, et al. Intraoperative intrinsic optical imaging of neuronal activity from subdivisions of the human primary somatosensory cortex. Cereb Cortex. 2002;12(3):269–80.

    Article  PubMed  Google Scholar 

  10. Haglund MM, Hochman DW. Imaging of intrinsic optical signals in primate cortex during epileptiform activity. Epilepsia. 2007;48 Suppl 4:65–74.

    Article  PubMed  Google Scholar 

  11. Whitney MA, Crisp JL, Nguyen LT, et al. Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol. 2011;29(4):352–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Matsui A, Tanaka E, Choi HS, et al. Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery. 2010;148(1):87–95.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nakayama A, del Monte F, Hajjar RJ, et al. Functional near-infrared fluorescence imaging for cardiac surgery and targeted gene therapy. Mol Imaging. 2002;1(4):365–77.

    Article  PubMed  Google Scholar 

  14. Frank SJ, Chao KS, Schwartz DL, et al. Technology insight: PET and PET/CT in head and neck tumor staging and radiation therapy planning. Nat Clin Pract Oncol. 2005;2(10):526–33.

    Article  PubMed  Google Scholar 

  15. Pavic D, Koomen MA, Kuzmiak CM, et al. The role of magnetic resonance imaging in diagnosis and management of breast cancer. Technol Cancer Res Treat. 2004;3(6):527–41.

    PubMed  Google Scholar 

  16. Heenan SD. Magnetic resonance imaging in prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(4):282–8.

    Article  CAS  PubMed  Google Scholar 

  17. Goh V, Halligan S, Bartram CI. Local radiological staging of rectal cancer. Clin Radiol. 2004;59(3):215–26.

    Article  CAS  PubMed  Google Scholar 

  18. Benaron DA. The future of cancer imaging. Cancer Metastasis Rev. 2002;21(1):45–78.

    Article  CAS  PubMed  Google Scholar 

  19. Hustinx R, Benard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med. 2002;32(1):35–46.

    Article  PubMed  Google Scholar 

  20. Kinkel K, Vlastos G. MR imaging: breast cancer staging and screening. Semin Surg Oncol. 2001;20(3):187–96.

    Article  CAS  PubMed  Google Scholar 

  21. Kurhanewicz J, Vigneron DB, Nelson SJ. Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia. 2000;2(1–2):166–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Flanagan FL, Dehdashti F, Siegel BA. PET in breast cancer. Semin Nucl Med. 1998;28(4):290–302.

    Article  CAS  PubMed  Google Scholar 

  23. Angelelli G, Ianora AA, Scardapane A, et al. Role of computerized tomography in the staging of gastrointestinal neoplasms. Semin Surg Oncol. 2001;20(2):109–21.

    Article  CAS  PubMed  Google Scholar 

  24. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.

    Article  CAS  PubMed  Google Scholar 

  25. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med. 2003;9(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  26. Crane LM, Themelis G, Buddingh T, et al. Multispectral real-time fluorescence imaging for intraoperative detection of the sentinel lymph node in gynecologic oncology. J Vis Exp (44). pii: 2225.

    Google Scholar 

  27. Crane LM, Themelis G, Arts HJ, et al. Intraoperative near-infrared fluorescence imaging for sentinel lymph node detection in vulvar cancer: first clinical results. Gynecol Oncol. 2011;120(2):291–5.

    Article  CAS  PubMed  Google Scholar 

  28. Crane LM, Themelis G, Pleijhuis RG, et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol. 2011;13(5):1043–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. van Dam GM, Crane LMA, Themelis G, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptoralpha targeting: first in-human results. Nat Med. 2011;17(10):1315–9.

    Article  PubMed  Google Scholar 

  30. Ntziachristos V, Turner G, Dunham J, et al. Planar fluorescence imaging using normalized data. J Biomed Opt. 2005;10(6):064007.

    Article  PubMed  Google Scholar 

  31. Themelis G, Yoo JS, Soh KS, et al. Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt. 2009;14(6):064012.

    Article  PubMed  Google Scholar 

  32. Ntziachristos V, Ripoll J, Wang LV, et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005;23(3):313–20.

    Article  CAS  PubMed  Google Scholar 

  33. Ntziachristos V, Yodh AG, Schnall M, et al. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA. 2000;97(6):2767–72.

    Article  CAS  PubMed  Google Scholar 

  34. Lee K. Optical mammography: diffuse optical imaging of breast cancer. World J Clin Oncol. 2011;2(1):64–72.

    Article  PubMed Central  PubMed  Google Scholar 

  35. White AG, Fu N, Leevy WM, et al. Optical imaging of bacterial infection in living mice using deep-red fluorescent squaraine rotaxane probes. Bioconjug Chem. 2010;21(7):1297–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hintersteiner M, Enz A, Frey P, et al. In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol. 2005;23(5):577–83.

    Article  CAS  PubMed  Google Scholar 

  37. Wallis de Vries BM, Hillebrands JL, van Dam GM, et al. Images in cardiovascular medicine. Multispectral near-infrared fluorescence molecular imaging of matrix metalloproteinases in a human carotid plaque using a matrix-degrading metalloproteinase-sensitive activatable fluorescent probe. Circulation. 2009;119(20):e534–6.

    Article  CAS  PubMed  Google Scholar 

  38. Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23(11):1418–23.

    Article  CAS  PubMed  Google Scholar 

  39. Nagengast WB, de Vries EG, Hospers GA, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med. 2007;48(8):1313–9.

    Article  CAS  PubMed  Google Scholar 

  40. Marshall MV, Draney D, Sevick-Muraca EM, et al. Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol. 2010;12(6):583–94.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Pleijhuis RG, Graafland M, de Vries J, et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 2009;16(10):2717–30.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cao D, Lin C, Woo SH, et al. Separate cavity margin sampling at the time of initial breast lumpectomy significantly reduces the need for reexcisions. Am J Surg Pathol. 2005;29(12):1625–32.

    Article  PubMed  Google Scholar 

  43. Pleijhuis RG, Langhout GC, Helfrich W, et al. Near-infrared fluorescence (NIRF) imaging in breast-conserving surgery: assessing intraoperative techniques in tissue-simulating breast phantoms. Eur J Surg Oncol. 2011;37(1):32–9.

    Article  CAS  PubMed  Google Scholar 

  44. Riedl O, Fitzal F, Mader N, et al. Intraoperative frozen section analysis for breast-conserving therapy in 1016 patients with breast cancer. Eur J Surg Oncol. 2009;35(3):264–70.

    Article  CAS  PubMed  Google Scholar 

  45. Themelis G, Harlaar NJ, Kelder W, et al. Enhancing surgical vision by using real-time imaging of alpha(v)beta (3)-integrin targeted near-infrared fluorescent agent. Ann Surg Oncol. 2011;18(12):3506–13.

    Article  PubMed  Google Scholar 

  46. Matsui A, Tanaka E, Choi HS, et al. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery. 2010;148(1):78–86.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Kelder W, Nimura H, Takahashi N, et al. Sentinel node mapping with indocyanine green (ICG) and infrared ray detection in early gastric cancer: an accurate method that enables a limited lymphadenectomy. Eur J Surg Oncol. 2010;36(6):552–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fujiwara M, Mizukami T, Suzuki A, et al. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aesthet Surg. 2009;62(10):e373–8.

    Article  PubMed  Google Scholar 

  49. van Oosten M, Crane LM, Bart J, et al. Selecting potential targetable biomarkers for imaging purposes in colorectal cancer using TArget Selection Criteria (TASC): a novel target identification tool. Transl Oncol. 2011;4(2):71–82.

    PubMed Central  PubMed  Google Scholar 

  50. Hama Y, Urano Y, Koyama Y, et al. In vivo spectral fluorescence imaging of submillimeter peritoneal cancer implants using a lectin-targeted optical agent. Neoplasia. 2006;8(7):607–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. van Leeuwen AC, Buckle T, Bendle G, et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt. 2011;16(1):016004.

    Article  PubMed  Google Scholar 

  52. Sarantopoulos A, Themelis G, Ntziachristos V. Imaging the bio-distribution of fluorescent probes using multispectral epi-illumination cryoslicing imaging. Mol Imaging Biol. 2011;13(5):874–85.

    Article  PubMed  Google Scholar 

  53. Razansky D. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photonics. 2009;3:412–7.

    Article  CAS  Google Scholar 

  54. Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110(5):2783–94.

    Article  CAS  PubMed  Google Scholar 

  55. Buehler A, Herzog E, Razansky D, et al. Video rate optoacoustic tomography of mouse kidney perfusion. Opt Lett. 2010;35(14):2475–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harlaar, N.J., van Dam, G.M., Ntziachristos, V. (2014). Intraoperative Optical Imaging. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics