Skip to main content

Advertisement

Log in

Imaging the Bio-Distribution of Fluorescent Probes Using Multispectral Epi-Illumination Cryoslicing Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The increasing availability of fluorescent probes for in vivo optical imaging enables the interrogation of complex biological processes in small animals serving as models for human-like tissue function and disease. However, the validation of probe bio-distribution during their development or the study of different disease models, in support of in vivo imaging studies, is not straightforward.

Procedures

The imaging system developed consists of a customized multispectral planar imager that has been adapted on a commercial cryomicrotome and provides a powerful modality for ex vivo imaging of small animals.

Results

The ability to capture 3D anatomical (color) and fluorescence volumetric distributions of multiple fluorescent markers in high resolution is showcased.

Conclusions

Serving both as a method for accurately imaging the bio-distribution of multiple fluorescent agents inside organisms and as a modality for the validation of non-invasive methods, multispectral cryoslicing imaging offers useful insights to ex vivo optical imaging of molecular probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    Article  PubMed  CAS  Google Scholar 

  2. Olson ES, Jiang T, Aguilera TA et al (2010) Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 107(9):4311–4316

    Article  PubMed  CAS  Google Scholar 

  3. Eisenberg DP, Adusumilli PS, Hendershott KJ et al (2006) Real-time intraoperative detection of breast cancer axillary lymph node metastases using a green fluorescent protein-expressing herpes virus. Ann Surg 243(6):824–832

    Article  PubMed  Google Scholar 

  4. Shu X, Royant A, Lin MZ et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807

    Article  PubMed  Google Scholar 

  5. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589

    Article  PubMed  CAS  Google Scholar 

  6. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320

    Article  PubMed  CAS  Google Scholar 

  7. Jaffer FA, Libby P, Weissleder R (2007) Molecular imaging of cardiovascular disease. Circulation 116(9):1052–1061

    Article  PubMed  Google Scholar 

  8. Deguchi J, Aikawa M, Tung CH et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  9. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis with double markers in mice. Cell 121(3):479–492

    Article  PubMed  CAS  Google Scholar 

  10. Ntziachristos V, Turner G, Dunham J et al (2005) Planar fluorescence imaging using normalized data. J Biomed Opt 10(6):064007

    Article  PubMed  Google Scholar 

  11. Bogaards A, Sterenborg HJ, Trachtenberg J, Wilson BC, Lilge L (2007) In vivo quantification of fluorescent molecular markers in real-time by ratio imaging for diagnostic screening and image-guided surgery. Lasers Surg Med 39(7):605–613

    Article  PubMed  CAS  Google Scholar 

  12. Weissleder R, Tung C-H, Mahmood U, Bogdanov A (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechol 17(4):375–378

    Article  CAS  Google Scholar 

  13. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechol 22(8):969–976

    Article  CAS  Google Scholar 

  14. Yang M, Baranov E, Jiang P et al (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206–1211

    Article  PubMed  CAS  Google Scholar 

  15. Hillman EMC, Moore A (2007) All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast. Nat Photonics 1(9):526–530

    Article  PubMed  CAS  Google Scholar 

  16. Hillman EMC, Burgess SA (2008) Sub-millimeter 3D optical imaging of living tissue using laminar optical tomography. Laser Photon Rev 3(1–2):159–179

    Google Scholar 

  17. Ntziachristos V, Tung C-H, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8(7):757–761

    Article  PubMed  CAS  Google Scholar 

  18. Sharpe J, Ahlgren U, Perry P et al (2002) Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567):541–545

    Article  PubMed  CAS  Google Scholar 

  19. Razansky D, Distel M, Vinegoni C et al (2009) Multi-spectral opto-acoustic tomography of deep seated fluorescent proteins in vivo. Nat Photonics 3:412–417

    Article  CAS  Google Scholar 

  20. Razansky D, Vinegoni C, Ntziachristos V (2007) Multispectral photoacoustic imaging of fluorochromes in small animals. Opt Lett 32(19):2891–2893

    Article  PubMed  CAS  Google Scholar 

  21. Li ML, Oh JT, Xie XY et al (2008) Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE 96(3):481–489

    Article  CAS  Google Scholar 

  22. Tanaka E, Choi HS, Fujii H, Bawendi MG, Frangioni JV (2006) Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann Surg Oncol 13(12):1671–1681

    Article  PubMed  Google Scholar 

  23. Weninger WJ, Mohun T (2002) Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet 30(1):59–65

    Article  PubMed  CAS  Google Scholar 

  24. Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R (2002) Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev Dyn 225(3):369–375

    Article  PubMed  Google Scholar 

  25. Rosenthal J, Mangal V, Walker D et al (2004) Rapid high resolution three dimensional reconstruction of embryos with episcopic fluorescence image capture. Birth Defects Res C Embryo Today 72(3):213–223

    Article  PubMed  CAS  Google Scholar 

  26. Wilson D, Roy D, Steyer G et al (2008) Whole mouse cryo-imaging. Proc SPIE 6916:69161I–69165I

    Article  Google Scholar 

  27. Steyer G, Roy D, Salvado O, Stone M, Wilson D (2009) Cryo-imaging of fluorescently-labeled single cells in a mouse. Proc Soc Photo-opt Instrum Eng 7262:72620W–72621W

    PubMed  Google Scholar 

  28. Montet X, Figueiredo J-L, Alencar H et al (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242(3):751–758

    Article  PubMed  Google Scholar 

  29. Kossodo S, Pickarski M, Lin SA, et al (2009) Dual in vivo quantification of integrin-targeted and protease-activated agents in cancer using fluorescence molecular tomography (FMT). Mol Imaging Biol 1–12. doi:10.1007/s11307-009-0279-z

  30. Sarder P, Nehorai A (2006) Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Proc Mag 23:32–45

    Article  Google Scholar 

  31. Wang L, Jacques SL, Zheng L (1995) MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Program Biomed 47(2):131–146

    Article  CAS  Google Scholar 

  32. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study. Phys Med Biol 50:4225–4241

    Article  PubMed  Google Scholar 

  33. Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Elect 26(12):2166–2185

    Article  Google Scholar 

  34. Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-ray computed tomography. IEEE Trans Med Imaging 29(2):465–473

    Article  PubMed  Google Scholar 

  35. Themelis G, Yoo JS, Ntziachristos V (2008) Multispectral imaging using multiple-bandpass filters. Opt Lett 33(9):1023–1025

    Article  PubMed  Google Scholar 

  36. Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51(8):2029–2043

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Claudia Mayerhofer and Christoph Drebinger for their valuable technical assistance.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos .

Additional information

Significance

This is a novel method for multispectral three-dimensional ex vivo small animal imaging using a rotary cryotome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarantopoulos , A., Themelis , G. & Ntziachristos , V. Imaging the Bio-Distribution of Fluorescent Probes Using Multispectral Epi-Illumination Cryoslicing Imaging. Mol Imaging Biol 13, 874–885 (2011). https://doi.org/10.1007/s11307-010-0416-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0416-8

Key words

Navigation