Skip to main content

Kato Smoothing Effect for Schrödinger Operator

  • Chapter
  • First Online:
Studies in Phase Space Analysis with Applications to PDEs

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 84))

Abstract

In this paper we give a survey of results on smoothing effect for Schrödinger operators. Several phenomena can be called smoothing effect. Here we limit us on the Kato or one half smoothing effect. We shall give the new and old results in different contexts, global in time and local in time in all spaces, in exterior domain. In this last case we shall give the recent result where the geometrical control condition is not satisfied and replaced by a damping condition. This kind of assumption originates in the control theory. We shall give also some references on the other smoothing effect, Strichartz estimate and related problem for wave equation, and KdV equation without exhaustiveness.

2010 Mathematics Subject Classification: 35Q41, 35B65.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a function on q(x, ξ), there are several manner to associate an operator. For instance if q(x, ξ) = a(x)ξ, the classical quantification of q is a(x)D j . Other possibility is D j a(x). The Weyl quantification is the mix of the previous one, i.e., \((1/2)(a(x)D_{j} + D_{j}a(x))\). For a general symbol, the formula is more complicated; see Hrmander [32, Chap. 18, 5].

References

  1. Aloui, L.: Smoothing effect for regularized Schrödinger equation on compact manifolds. Collect. Math. 59, 53–62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aloui, L.: Smoothing effect for regularized Schrödinger equation on bounded domains. Asympt. Anal. 59, 179–193 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Aloui, L., Khenissi, M.: Stabilisation de l’équation des ondes dans un domaine extérieur. Rev. Math. Iberoamericana, 28, 1–16 (2002)

    Article  MathSciNet  Google Scholar 

  4. Aloui, L., Khenissi, M.: Stabilization of Schrödinger equation in exterior domains. Contr. Optim. Calculus Variat. ESAIM 13, 570–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aloui, L., Khenissi, M.: Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete Contin. Dyn. Syst. Ser. A 27, 919–934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aloui, L., Khenissi, M., Vodev, G.: Smoothing effect for the regularized Schrödinger equation with non controlled orbits. Comm. Partial Diff. Eq. 38, 265–275 (2013)

    Article  Google Scholar 

  7. Aloui, L., Khenissi, M., Robbiano, L.: The Kato smoothing effect for regularized Schrödinger equations in exterior domains. Submitted

    Google Scholar 

  8. Atallah-Baraket, A., Mechergui, C.: Analytic smoothing effect for the Schrödinger equation relative to the harmonic oscillator equation. Asymp. Anal. 63, 29–48 (2009)

    MathSciNet  Google Scholar 

  9. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Contr. Optim. 30, 1024–1065 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Artzi, M., Devinatz, A.: Local smoothing and convergence properties of Schrödinger type equations. J. Funct. Anal. 101, 231–254 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Artzi, M., Klainerman, S.: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58, 25–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bouclet, J-M., Tzvetkov, N.: Strichartz estimates for long range perturbations. Am. J. Math. 129, 1565–1609 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burq, N.: In: Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, vol. 1996/97. Astérisque 245, 167–195 (1997)

    MathSciNet  Google Scholar 

  14. Burq, N.: Semi-classical estimates for the resolvent in nontrapping geometries. Int. Math. Res. Not. 5, 221–241 (2002)

    Article  MathSciNet  Google Scholar 

  15. Burq, N.: Estimations de Strichartz pour des perturbations longue porte de l’oprateur de Schrdinger. Sminaire quations aux Drives Partielles, 2001–2002, expos n011, cole Polytechnique

    Google Scholar 

  16. Burq, N.: Smoothing effect for Schrödinger boundary value problems. Duke Math. J. 123, 403–427 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burq, N., Gérard, P.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325, 749–752 (1997)

    Article  MATH  Google Scholar 

  18. Burq, N., Gérard, P., Tzvetkov, N.: On nonlinear Schrödinger equations in exterior domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 295–318 (2004)

    MATH  Google Scholar 

  19. Constantin, P., Saut, J.-C.: Local smoothing properties of dispersive equations. J. Am. Math. Soc. 1, 413–439 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin, P., Saut, J.-C.: Local smoothing properties of Schrödinger equations. Indiana Univ. Math. J. 38, 791–810 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Craig, W., Kappeler, T., Strauss, W.: Microlocal dispersive smoothing for the Schrödinger equation. Comm. Pure Appl. Math. 48, 769–860 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davies, E.B.: In: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. De Bouard, A., Hayashi, N., Kato, K.: Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 673–725 (1995)

    MATH  Google Scholar 

  24. Dehman, B., Gérard, P., Lebeau, G.: Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254, 729–749 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Doi, S.: Smoothing effects for Schrödinger evolution group on Riemannian manifolds. Duke Math. J. 82, 679–706 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Doi, S.: Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow. Math. Ann. 318, 355–389 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doi, S.: Smoothing of solutions for Schrödinger equations with unbounded potentials. Publ. Res. Inst. Math. Sci. 41, 175–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gérard, P., Leichtnam, E.: Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71, 559–607 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ginibre, J., Velo, G.: Smoothing properties and retarded estimates for some dispersive evolution equations. Comm. Math. Phys. 144, 163–188 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hayashi, N., Saitoh, S.: Analyticity and smoothing effect for the Schrödinger equation. Ann. Inst. H. Poincaré Phys. Théor. 52, 163–173 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Helffer, B., Sjöstrand, J.: Équation de Schrödinger avec champ magnétique et équation de Harper. In: Schrödinger Operators (Sønderborg (1988)). Lecture Notes in Physics, vol. 345, pp. 118–197. Springer, Berlin (1989)

    Google Scholar 

  32. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1994)

    Google Scholar 

  33. Ito, K.: Propagation of singularities for Schrödinger equations on the Euclidean space with a scattering metric. Comm. Part. Differ. Equat. 31, 1735–1777 (2006)

    Article  MATH  Google Scholar 

  34. Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. 44, 573–604 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kapitanski, L., Safarov, Y.: Dispersive smoothing for Schrödinger equations. Math. Res. Lett. 3, 77–91 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Kajitani, K., Taglialatela, G.: Microlocal smoothing effect for Schrödinger equations in Gevrey spaces. J. Math. Soc. Jpn. 55, 855–896 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kamoun, I., Mechergui, C.: Generalization of the analytic wavefront set and application. Indiana Univ. Math. J. 56, 2569–2600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kato, T.: On the Cauchy problem for the (generalized) KdV equation. In: Guillemin, V. (ed.) Studies in Applied Mathematics. Adv. Math. Suppl. Stud., vol. 8, pp. 93–128. Academic, New York (1983)

    Google Scholar 

  39. Kato, K., Taniguchi, K.: Gevrey regularizing effect for nonlinear Schrödinger equations. Osaka J. Math. 33, 863–880 (1996)

    MathSciNet  MATH  Google Scholar 

  40. Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1, 481–496 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Koch, H., Saut, J.-C.: Local smoothing and local solvability for third order dispersive equations. SIAM J. Math. Anal. 38, 1528–1541 (2006/07)

    Google Scholar 

  43. Lax, P., Phillips, R.: Scattering Theory. Academic, Boston (1989)

    MATH  Google Scholar 

  44. Lebeau, G.: Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71, 267–291 (1992)

    MathSciNet  MATH  Google Scholar 

  45. Lebeau, G.: Équation des ondes amorties. Algebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), pp. 73–109. Kluwer, Dordrecht (1996)

    Google Scholar 

  46. Martinez, A., Nakamura, S., Sordoni, V.: Analytic smoothing effect for the Schrödinger equation with long-range perturbation. Comm. Pure Appl. Math. 59, 1330–1351 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations. Adv. Math. 222, 1277–1307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Martinez, A., Nakamura, S., Sordoni, V.: Analytic wave front set for solutions to Schrödinger equations II—long range perturbations. Comm. Part. Differ. Equat. 35, 2279–2309 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Melrose, R.B., Sjöstrand, J.: Singularities of boundary value problems. I. Comm. Pure Appl. Math. 31, 593–617 (1978)

    Article  MATH  Google Scholar 

  50. Melrose, R.B., Sjöstrand, J.: Singularities of boundary value problems. II. Comm. Pure Appl. Math. 35, 129–168 (1982)

    Article  MATH  Google Scholar 

  51. Miller, L.: Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary. J. Math. Pures Appl. 79, 227–269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mizuhara, R.: Microlocal smoothing effect for the Schrödinger evolution equation in a Gevrey class. J. Math. Pures Appl. 91, 115–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Morimoto, Y., Robbiano, L., Zuily, C.: Remark on the analytic smoothing for the Schrödinger equation. Indiana Univ. Math. J. 49, 1563–1579 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Nakamura, S.: Wave front set for solutions to Schrödinger equations. J. Funct. Anal. 256, 1299–1309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Robbiano, L., Zuily, C.: Microlocal analytic smoothing effect for the Schrödinger equation. Duke Math. J. 100, 93–129 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Robbiano, L., Zuily, C.: Effet régularisant microlocal analytique pour l’équation de Schrödinger: le cas des données oscillantes. Comm. Part. Differ. Equat. 25, 1891–1906 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Robbiano, L., Zuily, C.: Analytic theory for the quadratic scattering wave front set and application to the Schrödinger equation. Astérisque 283 (2002)

    Google Scholar 

  58. Robbiano, L., Zuily, C.: Remark on the Kato smoothing effect for Schrödinger equation with superquadratic potentials. Comm. Part. Differ. Equat. 33, 718–727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Robbiano, L., Zuily, C.: The Kato smoothing effect for Schödinger equations with unbounded potentials in exterior domains. Int. Math. Res. Notices 9,1636–1698 (2009)

    MathSciNet  Google Scholar 

  60. Rodnianski, I., Schlag, W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155, 451–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Rodnianski, I., Schlag, W., Soffer, A.: Dispersive analysis of charge transfer models. Comm. Pure Appl. Math. 58, 149–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ruzhansky, M., Sugimoto, M.: A new proof of global smoothing estimates for dispersive equations. In: Advances in Pseudo-differential Operators. Oper. Theory Adv. Appl., vol. 155, pp. 65–75. Birkhäuser, Basel (2004)

    Google Scholar 

  63. Ruzhansky, M., Sugimoto, M.: A smoothing property of Schrödinger equations in the critical case. Math. Ann. 335, 645–673 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Shananin, N.A.: Singularities of the solutions of the Schrödinger equation for a free particle. Math. Notes 55, 626–631(1994)

    Article  MathSciNet  Google Scholar 

  65. Sjlin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55, 699–715 (1987)

    Article  MathSciNet  Google Scholar 

  66. Staffilani, G., Tataru, D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Part. Differ. Equat. 27, 1337–1372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  67. Taniguchi, K.: Gevrey regularizing effect for the initial value problem for a dispersive operator. Osaka J. Math. 41, 911–932 (2004)

    MathSciNet  MATH  Google Scholar 

  68. Vaĭnberg, B.R.: Asymptotic Methods in Equations of Mathematical Physics. Gordon & Breach Science Publishers, New York (1989)

    MATH  Google Scholar 

  69. Vega, L.: Schrödinger equations : pointwise convergence to the initial data. Proc. A.M.S. 102, 874–878 (1988)

    Google Scholar 

  70. Vasy, A., Zworski, M.: Semiclassical estimates in asymptotically Euclidean scattering. Comm. Math. Phys. 212, 205–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. Watanabe, K.: Smooth perturbations of the selfadjoint operator \(\vert {\Delta \vert }^{\alpha /2}\). Tokyo J. Math. 14, 239–250 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wunsch, J.: Propagation of singularities and growth for Schrödinger operators. Duke Math. J. 98, 137–186 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  73. Wunsch, J.: The trace of the generalized harmonic oscillator. Ann. Inst. Fourier (Grenoble) 49, 351–373 (1999)

    Google Scholar 

  74. Yajima, K.: In: On Smoothing Property of Schrödinger Propagators. Lecture Notes in Mathematics, vol. 1450, pp. 20–35. Springer, Berlin (1990)

    Google Scholar 

  75. Yajima, K., Zhang, G.: Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity. J. Differ. Equat. 202, 81–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Robbiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robbiano, L. (2013). Kato Smoothing Effect for Schrödinger Operator. In: Cicognani, M., Colombini, F., Del Santo, D. (eds) Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol 84. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-6348-1_16

Download citation

Publish with us

Policies and ethics