Skip to main content
Log in

Stabilization and Control for the Nonlinear Schrödinger Equation on a Compact Surface

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we study the stabilization property and the exact controllability for the nonlinear Schrödinger equation on a two dimensional compact Riemannian manifold, without boundary. We use a pseudo-differential dissipation. The proofs are based on a result of propagation of singularities and on recent dispersion estimates (Strichartz type inequalities) due to N. Burq, P. Gérard and N. Tzvetkov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri H., Gérard P. (1999). High frequency approximation of critical nonlinear wave equations. Am. J. Math. 121:131–175

    MATH  Google Scholar 

  2. Bardos C., Masrour T. (1996). Mesures de défaut: observation et contrôle de plaques. C.R.A.S, SérieI, t. 323:621–626

    MATH  MathSciNet  Google Scholar 

  3. Bardos C., Lebeau G., Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary. SIAM J. Control Optim. 305:1024–1065

    Article  MathSciNet  Google Scholar 

  4. Boutet de Monvel, L.: Propagation des singularités des solutions d’équations analogues à celles de Schrödinger. In: Fourier Integral Operators and Partial Differential Equations. Lecture Notes in Mathematics, vol. 459, pp 1–14. Springer, Berlin Heidelberg New York, (1975).

  5. Burq N., Zworski M. (2004). Geometric control in the presence of a black box. J. Am. Math. Soc. 17(2):443–471

    Article  MATH  MathSciNet  Google Scholar 

  6. Burq N., Gérard P., Tzvetzkov N. (2004). Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Maths. 126:569–605

    MATH  Google Scholar 

  7. Dehman B., Lebeau G., Zuazua E. (2003). Stabilization and control for the subcritical semilinear wave equation. Anna. Sci. Ec. Norm. Super. 36:525–551

    MATH  MathSciNet  Google Scholar 

  8. Fabre C. (1992). Résultats de contrôlabilité interne pour l’équation de Schrödinger et leurs limites asymptotiques: application à certaines équations de plaques vibrantes. Asymptotic Anal. 5:343–379

    MATH  MathSciNet  Google Scholar 

  9. Gérard P. (1991). Microlocal defect measures. Commun. Partial Diff. Eq. 16:1762–1794

    Google Scholar 

  10. Gérard P. (1996). Oscillation and concentration effects in semilinear dispersive wave equations. J. Funct. Anal. 41(1):60–98

    Article  Google Scholar 

  11. Hörmander, L.: The Analysis of Linear partial Differential Operators, vol. III. Springer, (1985).

  12. Jaffard S. (1990). Contrôle interne exact des vibrations d’une plaque rectangulaire. Portugal Math. 47(4):423–429

    MATH  MathSciNet  Google Scholar 

  13. Koch H., Tataru D. (2005). Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Math. 58(2):217–284

    Article  MATH  MathSciNet  Google Scholar 

  14. Lascar R. (1977). Propagation des singularités des solutions d’équations pseudo-différentielles quasi-homogènes. Ann. Inst. Fourier, Grenoble 27(2): 79–123

    MATH  MathSciNet  Google Scholar 

  15. Lasiecka I., Triggiani R. (1992). Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control. Diff. Integral Eq. 5:521–535

    MATH  MathSciNet  Google Scholar 

  16. Lebeau G. (1992). Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. 71:267–291

    MATH  MathSciNet  Google Scholar 

  17. Miller L. (2004). How violent are fast controls for Schrödinger and plate vibrations?. Arch. Ration. Mech. Anal. 172:429–456

    Article  MATH  MathSciNet  Google Scholar 

  18. Miller L. (2005). Controllability cost of conservative systems : resolvent condition and transmutation. J. Funct. Anal. 218:425–444

    Article  MATH  MathSciNet  Google Scholar 

  19. Phung K.-D. (2001). Observability and Control for Schrödinger equations. SIAM J. Control Optim. 40:211–230

    Article  MATH  MathSciNet  Google Scholar 

  20. Wunsch J. (1999). Propagation of singularities and growth for Schrödinger operators. Duke Math. J. 98(1):137–186

    Article  MATH  MathSciNet  Google Scholar 

  21. Zuazua E. (1990). Exact controllability for the semilinear wave equation. J. Math. Pures Appl. 69(1):33–55

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dehman.

Additional information

B. Dehman is supported by the Tunisian Ministry for Scientific Research and Technology (MRST), within the LAB-STI-02 program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehman, B., Gérard, P. & Lebeau, G. Stabilization and Control for the Nonlinear Schrödinger Equation on a Compact Surface. Math. Z. 254, 729–749 (2006). https://doi.org/10.1007/s00209-006-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0005-3

Keywords

Navigation