Skip to main content

Oxidative Stress in Rheumatoid Arthritis

  • Chapter
  • First Online:
Studies on Arthritis and Joint Disorders

Abstract

Redox imbalance has long been recognised to be a factor in the pathology of rheumatoid arthritis. There is increasing evidence that reactive species of oxygen, nitrogen and sulphur play biphasic roles in inflammation and may have disease aggravating or ameliorating effects, depending on the dose, tissue compartment and disease phase. A promising target both for therapeutic purposes and as disease markers is the thioredoxin family of redox enzymes, including thioredoxins, thioredoxin reductases and peroxiredoxins. Through its cytokine-like properties, thioredoxin has been proposed to be pro-inflammatory in rheumatoid arthritis. Yet, administration of recombinant thioredoxin appears to ameliorate the disease. We demonstrated recently that protein levels of peroxiredoxin 2 are increased in peripheral blood lymphocytes in rheumatoid arthritis compared with healthy subjects. Therapeutically targeting peroxiredoxins in rheumatoid arthritis provides a new avenue for biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GSH:

Glutathione

GSSG:

Glutathione disulphide

H2O2 :

Hydrogen peroxide

HOCl:

Hypochlorous acid

IL:

Interleukin

LPS:

Lipopolysaccharide

NF-κB:

Nuclear factor kappa-B

NO:

Nitric oxide

NOS:

NO synthase enzyme

1O2 :

Singlet oxygen

1O2 •− :

Superoxide

OH:

Hydroxyl radical

ONOO :

Peroxynitrite

oxLDL:

Oxidised low-density lipoprotein

Prdx:

Peroxiredoxin

RA:

Rheumatoid arthritis

RNS:

Reactive nitrogen species

ROO :

Peroxyl radical

ROS:

Reactive oxygen species

RSS:

Reactive sulphur species

SNO-MBL:

S-nitrosated mannose binding lectin

SOD:

Superoxide dismutase

TLR:

Toll-like receptor

TNF:

Tumour necrosis factor

Trx:

Thioredoxin

2D-PAGE:

2-Dimensional polyacrylamide gel electrophoresis

References

  1. Hakim AJ, Clunie GPR, Haq I (2006) Oxford handbook of rheumatology. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  PubMed  CAS  Google Scholar 

  3. Bisoendial RJ, Stroes ESG, Kastelein JJP et al (2010) Targeting cardiovascular risk in rheumatoid arthritis: a dual role for statins. Nat Rev Rheumatol 6:157–164

    Article  PubMed  CAS  Google Scholar 

  4. Calvo-Alén J, Alarcón GS (2006) Epidemiology and determinants of susceptibility. In: Firestein GS, Panayi GS, Wollheim FA (eds) Rheumatoid arthritis, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  5. Altindag O, Karakoc M, Kocyigit A et al (2007) Increased DNA damage and oxidative stress in patients with rheumatoid arthritis. Clin Biochem 40:167–171

    Article  PubMed  CAS  Google Scholar 

  6. Gilston V, Blake DR, Winyard PG (1998) The rheumatoid joint: redox paradox? In: Montagnier L, Olivier R, Pasquier C (eds) Oxidative stress in cancer, AIDS, and neurodegenerative diseases. Marcel Dekker, New York

    Google Scholar 

  7. Ozkan Y, Yardým-Akaydýn S, Sepici A et al (2007) Oxidative status in rheumatoid arthritis. Clin Rheumatol 26:64–68

    Article  PubMed  Google Scholar 

  8. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Ed Engl 25:1058–1071

    Article  Google Scholar 

  9. Hurd TR, Murphy PM (2009) Biological systems relevant for redox signaling and control. In: Jacob C, Winyard PG (eds) Redox signaling and regulation in biology and medicine. Wiley-VCH, Weinheim

    Google Scholar 

  10. Bienert GP, Møller ALB, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  PubMed  CAS  Google Scholar 

  11. Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11:1349–1356

    Article  PubMed  CAS  Google Scholar 

  12. Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  PubMed  CAS  Google Scholar 

  13. Sundaresan M, Yu ZX, Ferrans VJ et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299

    Article  PubMed  CAS  Google Scholar 

  14. Ohba M, Shibanuma M, Kuroki T et al (1994) Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 126:1079–1088

    Article  PubMed  CAS  Google Scholar 

  15. Meier B, Radeke HH, Selle S et al (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263:539–545

    PubMed  CAS  Google Scholar 

  16. Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  PubMed  CAS  Google Scholar 

  17. Kang SW, Rhee SG, Chang TS et al (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med 11:571–578

    Article  PubMed  CAS  Google Scholar 

  18. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14

    Article  PubMed  CAS  Google Scholar 

  19. Nisoli E, Clementi E, Paolucci C (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  20. Koncz A, Pásztói M, Mazan M et al (2007) Nitric oxide mediates T cell cytokine production and signal transduction in histidine decarboxylase knockout mice. J Immunol 179:6613–6619

    PubMed  CAS  Google Scholar 

  21. Nagy G, Koncz A, Perl A et al (2003) T cell activation induced mitochondrial hyperpolarization is mediated by Ca2+ and redox-dependent production of nitric oxide. J Immunol 171:5188–5197

    PubMed  CAS  Google Scholar 

  22. Mitsuhashi H, Yamashita S, Ikeuchi H et al (2005) Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils. Shock 24:529–534

    Article  PubMed  CAS  Google Scholar 

  23. Whiteman M, Haigh R, Tarr JM et al (2010) Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann N Y Acad Sci 1203:146–150

    Article  PubMed  CAS  Google Scholar 

  24. Pattison DJ, Winyard PG (2008) Dietary antioxidants in inflammatory arthritis: do they have any role in etiology or therapy? Nat Clin Pract Rheumatol 4:590–596

    Article  PubMed  CAS  Google Scholar 

  25. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    Article  PubMed  CAS  Google Scholar 

  26. Hultqvist M, Olsson LM, Gelderman KA et al (2009) The protective role of ROS in autoimmune disease. Trends Immunol 30:201–208

    Article  PubMed  CAS  Google Scholar 

  27. Tak PP, Zvaifler NJ, Green DR et al (2000) Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 21:78–82

    Article  PubMed  CAS  Google Scholar 

  28. Halliwell B (1995) Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann Rheum Dis 54:505–510

    Article  PubMed  CAS  Google Scholar 

  29. Hitchon C, El-Gabalawy H (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278

    Article  PubMed  Google Scholar 

  30. Phillips DC, Dias HKI, Kitas GD et al (2009) Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention. Antioxid Redox Signal 12:743–785

    Article  CAS  Google Scholar 

  31. Jacob C, Ba LA (2011) Open season for hunting and trapping post-translational cysteine modifications in proteins and enzymes. ChemBioChem 12:841–844

    Article  PubMed  CAS  Google Scholar 

  32. Winyard PG, Ryan B, Eggleton P et al (2011) Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem Soc Trans 39:1226–1232

    Article  PubMed  CAS  Google Scholar 

  33. Filippin LI, Vercelino R, Marroni NP et al (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422

    Article  PubMed  CAS  Google Scholar 

  34. Lemarechal H, Allanore Y, Chenevier-Gobeaux C et al (2006) High redox thioredoxin but low thioredoxin reductase activities in the serum of patients with rheumatoid arthritis. Clin Chim Acta 367:156–161

    Article  PubMed  CAS  Google Scholar 

  35. Bashir S, Harris G, Denman MA et al (1993) Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases. Ann Rheum Dis 52:659–666

    Article  PubMed  CAS  Google Scholar 

  36. Firestein GS, Echeverri F, Yeo M et al (1997) Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 94:10895–10900

    Article  PubMed  CAS  Google Scholar 

  37. Eggleton P, Haigh R, Winyard PG (2008) Consequence of neo-antigenicity of the ‘altered self’. Rheumatology 47:567–571

    Article  PubMed  CAS  Google Scholar 

  38. Dai L, Zhang Z, Winyard PG et al (1996) A modified form of low-density lipoprotein with increased electronegative charge is present in rheumatoid arthritis synovial fluid. Free Radic Biol Med 22:705–710

    Article  Google Scholar 

  39. Winyard PG, Tatzber F, Esterbauer H et al (1993) Presence of foam cells containing oxidised low density lipoprotein in the synovial membrane from patients with rheumatoid arthritis. Ann Rheum Dis 52:677–680

    Article  PubMed  CAS  Google Scholar 

  40. Nissim A, Winyard PG, Corrigall V et al (2005) Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis Rheum 52:3829–3838

    Article  PubMed  CAS  Google Scholar 

  41. Nagy G, Clark JM, Buzás E et al (2008) Nitric oxide production of T lymphocytes is increased in rheumatoid arthritis. Immunol Lett 118:55–58

    Article  PubMed  CAS  Google Scholar 

  42. Gupta B, Raghav SK, Das HR (2008) S-nitrosylation of mannose binding lectin regulates its functional activities and the formation of autoantibody in rheumatoid arthritis. Nitric Oxide 18:266–273

    Article  PubMed  CAS  Google Scholar 

  43. Grinnell S, Yoshida K, Jasin HE (2005) Responses of lymphocytes of patients with rheumatoid arthritis to IgG modified by oxygen radicals or peroxynitrite. Arthritis Rheum 52:80–83

    Article  PubMed  CAS  Google Scholar 

  44. Niethammer P, Grabher C, Look AT et al (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

    Article  PubMed  CAS  Google Scholar 

  45. Yoo SK, Starnes TW, Deng Q et al (2012) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–112

    Article  CAS  Google Scholar 

  46. Di A, Gao X-P, Qian F et al (2012) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13:29–34

    Article  CAS  Google Scholar 

  47. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134

    Article  PubMed  CAS  Google Scholar 

  48. Dröge W (2002) Free radicals in the physiological control of cell function. Phys Rev 82:47–95

    Google Scholar 

  49. Winyard PG, Moody CJ, Jacob C (2005) Oxidative activation of antioxidant defence. Trends Biochem Sci 30:453–461

    Article  PubMed  CAS  Google Scholar 

  50. Lee R, Westendorf J, Gold M (2007) Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal 1:33–43

    Article  PubMed  Google Scholar 

  51. Williams MS, Kwon J (2004) T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Radic Biol Med 37:1144–1151

    Article  PubMed  CAS  Google Scholar 

  52. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Exp Rev Clin Pharmacol 4:13–32

    Article  CAS  Google Scholar 

  53. Fox B, Schantz JT, Haigh R et al (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910

    Article  PubMed  CAS  Google Scholar 

  54. Szabó KÉ, Line K, Eggleton P et al (2009) Structure and function of the human peroxiredoxin-based antioxidant system: the interplay between peroxiredoxins, thioredoxins, thioredoxin reductases, sulfiredoxins and sestrins. In: Winyard PG, Jacob C (eds) Redox signaling and regulation in biology and medicine. Wiley-VCH, Weinheim

    Google Scholar 

  55. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  56. Liew FY, Xu D, Brint EK et al (2005) Negative regulation of Toll-like receptor-mediated immune responses. Nat Rev Immunol 5:446–458

    Article  PubMed  CAS  Google Scholar 

  57. Abdollahi-Roodsaz S, Joosten LAB, Roelofs MF et al (2007) Inhibition of toll-like receptor 4 breaks the inflammatory loop in autoimmune destructive arthritis. Arthritis Rheum 56:2957–2967

    Article  PubMed  CAS  Google Scholar 

  58. Asehnoune K, Strassheim D, Mitra S et al (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-κB. J Immunol 172:2522–2529

    PubMed  CAS  Google Scholar 

  59. Yang CS, Lee DS, Song CH et al (2007) Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med 204:583–594

    Article  PubMed  CAS  Google Scholar 

  60. Matsui M, Oshima M, Oshima H et al (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178:179–185

    Article  PubMed  CAS  Google Scholar 

  61. Hultqvist M, Olofsson P, Holmberg J et al (2004) Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci USA 101:12646–12651

    Article  PubMed  CAS  Google Scholar 

  62. George-Chandy A, Nordström I, Nygren E et al (2008) Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol 38:1118–1126

    Article  PubMed  CAS  Google Scholar 

  63. Lawrence DA, Song R, Weber P (1996) Surface thiols of human lymphocytes and their changes after in vitro and in vivo activation. J Leukoc Biol 60:611–618

    PubMed  CAS  Google Scholar 

  64. Szabó-Taylor KÉ, Eggleton P, Turner CAL et al (2012) Lymphocytes from rheumatoid arthritis patients have elevated levels of intracellular peroxiredoxin 2, and a greater frequency of cells with exofacial peroxiredoxin 2, compared with healthy human lymphocytes. Int J Biochem Cell Biol 44:1223–1231

    Article  PubMed  CAS  Google Scholar 

  65. Mougiakakos D, Johansson CC, Kiessling R (2009) Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113:3542–3545

    Article  PubMed  CAS  Google Scholar 

  66. Mougiakakos D, Johansson CC, Jitschin R et al (2011) Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood 117:857–861

    Article  PubMed  CAS  Google Scholar 

  67. Wruck CJ, Fragoulis A, Gurzynski A et al (2011) Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Ann Rheum Dis 70:844–850

    Article  PubMed  CAS  Google Scholar 

  68. Gelderman KA, Hultqvist M, Olsson LM et al (2007) Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 9:1541–1568

    Article  PubMed  CAS  Google Scholar 

  69. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  70. Winkler H, Adam G, Mattes E et al (1988) Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J 7:1799–1804

    PubMed  CAS  Google Scholar 

  71. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Phys Rev 59:527–605

    CAS  Google Scholar 

  72. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208

    Article  PubMed  CAS  Google Scholar 

  73. Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  74. Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383:347–364

    PubMed  CAS  Google Scholar 

  75. Edmonds SE (2000) Do antioxidants have a role in the therapy of human inflammatory diseases? In: Winyard PG, Blake DR, Evans CH (eds) Free radicals and inflammation. Birkhäuser, Basel

    Google Scholar 

  76. Kus ML, Fairburn K, Blake DR et al (1995) A vascular basis for free radical involvement in inflammatory joint disease. In: Blake DR, Winyard PG (eds) Immunopharmacology of free radical species. Academic, San Diego, CA

    Google Scholar 

  77. Arner ESJ, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  PubMed  CAS  Google Scholar 

  78. Hirota K, Matsui M, Iwata S et al (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94:3633–3638

    Article  PubMed  CAS  Google Scholar 

  79. Martin H, Dean M (1991) Identification of a thioredoxin-related protein associated with plasma membranes. Biochem Biophys Res Commun 175:123–128

    Article  PubMed  CAS  Google Scholar 

  80. Arner ESJ (1999) Superoxide production by dinitrophenyl-derivatized thioredoxin reductase – a model for the mechanism and correlation to immunostimulation by dinitrohalobenzenes. Biofactors 10:219–226

    Article  PubMed  CAS  Google Scholar 

  81. Yoshida S, Katoh T, Tetsuka T et al (1999) Involvement of thioredoxin in rheumatoid arthritis: its costimulatory roles in the TNF-α-induced production of IL-6 and IL-8 from cultured synovial fibroblasts. J Immunol 163:351–358

    PubMed  CAS  Google Scholar 

  82. Jikimoto T, Nishikubo Y, Koshiba M et al (2001) Thioredoxin as a biomarker for oxidative stress in patients with rheumatoid arthritis. Mol Immunol 38:765–772

    Article  Google Scholar 

  83. Maurice MM, Nakamura H, Gringhuis S et al (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42:2430–2439

    Article  PubMed  CAS  Google Scholar 

  84. Lemarechal H, Anract P, Beaudeux J-L et al (2007) Expression and extracellular release of Trx80, the truncated form of thioredoxin, by TNF-α and IL-1β-stimulated human synoviocytes from patients with rheumatoid arthritis. Clin Sci 113:149–155

    Article  PubMed  CAS  Google Scholar 

  85. Pekkari K, Gurunath R, Arner ESJ et al (2000) Truncated thioredoxin is a mitogenic cytokine for resting human peripheral blood mononuclear cells and is present in human plasma. J Biol Chem 275:37474–37480

    Article  PubMed  CAS  Google Scholar 

  86. Pekkari K, Goodarzi MT, Scheynius A et al (2005) Truncated thioredoxin (Trx80) induces differentiation of human CD14+ monocytes into a novel cell type (TAMs) via activation of the MAP kinases p38, ERK, and JNK. Blood 105:1598–1605

    Article  PubMed  CAS  Google Scholar 

  87. Kabuyama Y, Kitamura T, Yamaki J et al (2008) Involvement of thioredoxin reductase 1 in the regulation of redox balance and viability of rheumatoid synovial cells. Biochem Biophys Res Commun 367:491–496

    Article  PubMed  CAS  Google Scholar 

  88. Kim CW, Cho EH, Lee YJ et al (2006) Disease specific proteins from rheumatoid arthritis patients. J Korean Med Sci 21:478–484

    Article  PubMed  CAS  Google Scholar 

  89. Bo GP, Zhou LN, He WF et al (2009) Analyses of differential proteome of human synovial fibroblasts obtained from arthritis. Clin Rheumatol 28:191–199

    Article  PubMed  Google Scholar 

  90. Ali IU, Hynes RO (1978) Role of disulfide bonds in the attachment and function of large, external, transformation-sensitive glycoprotein at the cell surface. Biochim Biophys Acta 510:140–150

    Article  PubMed  CAS  Google Scholar 

  91. Laragione T, Gianazza E, Tonelli R et al (2006) Regulation of redox-sensitive exofacial protein thiols in CHO cells. Biol Chem 387:1371–1376

    Article  PubMed  CAS  Google Scholar 

  92. Freed BM, Mozayeni B, Lawrence DA et al (1986) Differential inhibition of human T-lymphocyte activation by maleimide probes. Cell Immunol 101:181–194

    Article  PubMed  CAS  Google Scholar 

  93. Pedersen-Lane JH, Zurier RB, Lawrence DA (2007) Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J Leukoc Biol 81:934–941

    Article  PubMed  CAS  Google Scholar 

  94. Gelderman KA, Hultqvist M, Holmberg J et al (2006) T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc Natl Acad Sci USA 103:12831–12836

    Article  PubMed  CAS  Google Scholar 

  95. Wessels JAM, Huizinga TWJ, Guchelaar HJ (2008) Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology 47:249–255

    Article  PubMed  CAS  Google Scholar 

  96. Sahaf B, Söderberg A, Spyrou G et al (1997) Thioredoxin expression and localization in human cell lines: detection of full-length and truncated species. Exp Cell Res 236:181–192

    Article  PubMed  CAS  Google Scholar 

  97. Cortes-Bratti X, Basseres E, Herrera-Rodriguez F et al (2011) Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One 6:e16960

    Article  PubMed  CAS  Google Scholar 

  98. Hara T, Kondo N, Nakamura H et al (2007) Cell-surface thioredoxin-1: possible involvement in thiol-mediated leukocyte-endothelial cell interaction through lipid rafts. Antioxid Redox Signal 9:1427–1438

    Article  PubMed  CAS  Google Scholar 

  99. Angelini G, Gardella S, Ardy M et al (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci USA 99:1491–1496

    Article  PubMed  CAS  Google Scholar 

  100. Rubartelli A, Bajetto A, Allavena G et al (1992) Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem 267:24161–24164

    PubMed  CAS  Google Scholar 

  101. Soderberg A, Sahaf B, Rosen A (2000) Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res 60:2281–2289

    PubMed  CAS  Google Scholar 

  102. Chang JW, Lee SH, Lu Y et al (2006) Transforming growth factor-β1 includes the non-classical secretion of peroxiredoxin-I in A549 cells. Biochem Biophys Res Commun 345:118–123

    Article  PubMed  CAS  Google Scholar 

  103. Keller M, Rüegg A, Werner S et al (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831

    Article  PubMed  CAS  Google Scholar 

  104. Wakasugi N, Tagaya Y, Wakasugi H et al (1990) Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci USA 87:8282–8286

    Article  PubMed  CAS  Google Scholar 

  105. Miller LA, Usachenko J, McDonald RJ et al (2000) Trafficking of neutrophils across airway epithelium is dependent upon both thioredoxin- and pertussis toxin-sensitive signaling mechanisms. J Leukoc Biol 68:201–208

    PubMed  CAS  Google Scholar 

  106. Nakamura H, Hoshino Y, Okuyama H et al (2009) Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303–309

    Article  PubMed  CAS  Google Scholar 

  107. Bertini R, Howard OMZ, Dong HF et al (1999) Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes and T cells. J Exp Med 189:1783–1789

    Article  PubMed  CAS  Google Scholar 

  108. Powis G, Mustacich D, Coon A (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29:312–322

    Article  PubMed  CAS  Google Scholar 

  109. Matthias LJ, Yam PTW, Jiang X-M et al (2002) Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Nat Immunol 3:727–732

    PubMed  CAS  Google Scholar 

  110. Schwertassek U, Balmer Y, Gutscher M et al (2007) Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. EMBO J 26:3086–3097

    Article  PubMed  CAS  Google Scholar 

  111. Geiben-Lynn R, Kursar M, Brown NV et al (2003) HIV-1 antiviral activity of recombinant natural killer cell enhancing factors, NKEF-A and NKEF-B, members of the peroxiredoxin family. J Biol Chem 278:1569–1574

    Article  PubMed  CAS  Google Scholar 

  112. Chen JH, Chang YW, Yao CW et al (2004) Plasma proteome of severe acute respiratory syndrome analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proc Natl Acad Sci USA 101:17039–17044

    Article  PubMed  CAS  Google Scholar 

  113. Chang JW, Lee SH, Jeong JY et al (2005) Peroxiredoxin-I is an autoimmunogenic tumor antigen in non-small cell lung cancer. FEBS Lett 579:2873

    Article  PubMed  CAS  Google Scholar 

  114. Liu H, Pope RM (2003) The role of apoptosis in rheumatoid arthritis. Curr Opin Pharmacol 3:317–322

    Article  PubMed  CAS  Google Scholar 

  115. Korb A, Pavenstädt H, Pap T (2009) Cell death in rheumatoid arthritis. Apoptosis 14:447–454

    Article  PubMed  Google Scholar 

  116. Peng SL (2006) Fas (CD95)-related apoptosis and rheumatoid arthritis. Rheumatology 45:26–30

    Article  PubMed  CAS  Google Scholar 

  117. Chung HT, Pae HO, Choi BM et al (2001) Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282:1075–1079

    Article  PubMed  CAS  Google Scholar 

  118. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    Article  PubMed  CAS  Google Scholar 

  119. Leist M, Single B, Castoldi AF et al (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486

    Article  PubMed  CAS  Google Scholar 

  120. Cross A, Barnes T, Bucknall RC et al (2006) Neutrophil apoptosis in rheumatoid arthritis is regulated by local oxygen tensions within joints. J Leukoc Biol 80:521–528

    Article  PubMed  CAS  Google Scholar 

  121. Zhang P, Liu B, Kang SW et al (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272:30615–30618

    Article  PubMed  CAS  Google Scholar 

  122. Wang T, Tamae D, LeBon T et al (2005) The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res 65:10338–10346

    Article  PubMed  CAS  Google Scholar 

  123. Moon JC, Hah YS, Kim WY et al (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 280:28775–28784

    Article  PubMed  CAS  Google Scholar 

  124. Shau H, Kim AT, Hedrick CC et al (1997) Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Radic Biol Med 22:497–507

    Article  PubMed  CAS  Google Scholar 

  125. Chang TS, Cho CS, Park S et al (2004) Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279:41975–41984

    Article  PubMed  CAS  Google Scholar 

  126. Shih SF, Wu YH, Hung CH et al (2001) Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J Biol Chem 276:21870–21877

    Article  PubMed  CAS  Google Scholar 

  127. Cox AG, Pullar JM, Hughes G et al (2008) Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radic Biol Med 44:1001–1009

    Article  PubMed  CAS  Google Scholar 

  128. Wonsey DR, Zeller KI, Dang CV (2002) The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci USA 99:6649–6654

    Article  PubMed  CAS  Google Scholar 

  129. Ueda S, Nakamura T, Yamada A et al (2006) Recombinant human thioredoxin suppresses lipopolysaccharide-induced bronchoalveolar neutrophil infiltration in rat. Life Sci 79:1170–1177

    Article  PubMed  CAS  Google Scholar 

  130. Ichiki H, Hoshino T, Kinoshita T et al (2005) Thioredoxin suppresses airway hyperresponsiveness and airway inflammation in asthma. Biochem Biophys Res Commun 334:1141–1148

    Article  PubMed  CAS  Google Scholar 

  131. Tsuji G, Koshiba M, Nakamura H et al (2006) Thioredoxin protects against joint destruction in a murine arthritis model. Free Radic Biol Med 40:1721–1731

    Article  PubMed  CAS  Google Scholar 

  132. Ohashi S, Nishio A, Nakamura H et al (2006) Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 290:G772–G781

    Article  PubMed  CAS  Google Scholar 

  133. Schröder E, Littlechild JA, Lebedev AA et al (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure 8:605–615

    Article  PubMed  Google Scholar 

  134. Maicas N, Ferrándiz ML, Brines R, Ibán˜es L, Cuadrado A, Koenders MI, van den Berg WB, Alcaraz MJ (2011) Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxid Redox Signal 15:889–901

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge grants from the European Union FP7 Marie Curie ITN programme (no. 215009) and the Hungarian Scientific Research Fund (OTKA; Grant No NK84043). Many thanks to Dr Joanna Mary Tarr for providing Fig. 8.1 and to Dr Tamás Géza Szabó for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Winyard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Szabó-Taylor, K.É., Nagy, G., Eggleton, P., Winyard, P.G. (2013). Oxidative Stress in Rheumatoid Arthritis. In: Alcaraz, M., Gualillo, O., Sánchez-Pernaute, O. (eds) Studies on Arthritis and Joint Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-6166-1_8

Download citation

Publish with us

Policies and ethics