Skip to main content

Breeding Salinity Tolerance in Citrus Using Rootstocks

  • Chapter
  • First Online:
Salt Stress in Plants

Abstract

Citrus is a salt-sensitive crop and is influences at low concentrations of salt. Soil and/or water salinity can severely affect the growth and normal physiological processes in citrus trees. In citrus, rootstock is the most important component of the tree to assess salt tolerance or sensitivity. Hence, the choice of the appropriate rootstock plays a crucial role in yield. Numerous experiments have shown that exclusion of Cl and Na+ is a hereditary/genetic function. Thus, selection of suitable parental genotypes would restrict the translocation of Cl or Na+ in the grafted variety or developed hybrids.

In countries such as Spain, Australia, USA and France, one of the main goals of the citrus breeding programs is to obtain new rootstocks tolerant to salinity. In Spain during 1974, a program began at the Valencian Institute for Agricultural Research (IVIA) to breed citrus rootstocks by hybridizations, in which more than 500 hybrids were evaluated to determine their agronomic performances including tolerance to salinity. Several new commercial rootstocks have been produced in this breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci 56(5):575–588

    Article  CAS  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afri J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Aksoy U, Hepaksoy S, Can HZ, Anac S, Ul MA, Dorsan F, Anac D, Okur B, Kilic C (2000) The effect of rootstock on leaf characteristics and physiological response of Satsuma mandarins under saline conditions. In: Fokkema NJ, Beek MA, Steekelenburg N, Samyn G, Maas JL, Robinson TL, Verhoyen MNJ (ed) XXV International of agriculture congress, Part 3: culture techniques with special emphasison environmental implications. Acta-Horticulturae, vol 513. Brussels, Belgium, 2–7 August, 1998, pp 169–175

    Google Scholar 

  • Alva AK, Syvertsen JP (1991) Soil and citrus tree nutrition are affected by salinized irrigation water. Proc Fla State Hort Soc 104:135–138

    Google Scholar 

  • Aslam M, Huffaker RC, Rains DW (1984) Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol 76:321–325

    Article  PubMed  CAS  Google Scholar 

  • Ball MC, Chow WS, Anderson JM (1987) Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust J Plant Physiol 14:351–361

    Article  CAS  Google Scholar 

  • Bañuls J, Primo-Millo E (1992) Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiol Plant 86:115–123

    Article  Google Scholar 

  • Bañuls J, Primo-Millo E (1995) Effects of salinity on some Citrus scion-rootstock combinations. Ann Bot 76:97–102

    Article  Google Scholar 

  • Bañuls J, Legaz F, Primo-Millo E (1990) Effect of salinity on uptake and distribution of chloride and sodium in some citrus scion-rootstock combinations. J Hortic Sci 65:715–724

    Google Scholar 

  • Bañuls J, Legaz F, Primo-Millo E (1991) Salinity-calcium interactions on growth and ionic concentration of Citrus plants. Plant Soil 133:39–46

    Article  Google Scholar 

  • Bañuls J, Serna MD, Legaz F, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199

    Article  Google Scholar 

  • Bar Y, Apelbaum A, Kafkafi U, Goren R (1998) Ethylene association with chloride stress in citrus plants. Sci Hortic 73:99–109

    Article  CAS  Google Scholar 

  • Behboudian MH, Törökfalvy E, Walker RR (1986) Effects of salinity on ionic content, water relations and gas exchange parameters in some citrus scion-rootstocks combinations. Sci Hortic 28:105–116

    Article  CAS  Google Scholar 

  • Bevington KB, Castle WS (1985) Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature and soil water content. J Am Soc Hortic Sci 110:840–845

    Google Scholar 

  • Bhambota JR, Kanwar JS (1969) Salinity tolerance of some rootstocks and scions of citrus species. Proc First Int Citrus Symp 3:1833–1835

    Google Scholar 

  • Blum A, Jonson JW (1992) Transfer of water from roots into dry soil and the effect on wheat water relations and growth. Plant Soil 145:141–149

    Article  Google Scholar 

  • Boman JB (1993) First year response of “Ruby red” grapefruit on four rootstocks to fertilization and salinity. Proc Fla State Hort Soc 106:12–18

    Google Scholar 

  • Brumos J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sánchez G, Iglesias DJ, Lopez-Climent MF, Gomez-Cadenas A, Talon M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate SALT stress responses in tolerant and sensitive citrus rootstocks. Funct Integr Genomics 9:293–309

    Article  PubMed  CAS  Google Scholar 

  • Brumos J, Talon M, Bouhlal R, Colmenero-Flores JM (2010) Cl homeostasis in includer and excluder citrus rootstocks: transport mechanisms and identification of candidate genes. Plant Cell Environ 33:2012–2027

    Article  PubMed  CAS  Google Scholar 

  • Castle WS (1978) Citrus root systems: their structure, function, growth and relationship to tree performance. In: Proceedings of the international society citriculture, University of Sydney, Australia, 1978, pp 62–69

    Google Scholar 

  • Castle WS (1987) Citrus rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruits crops. Wiley, New York, pp 361–369

    Google Scholar 

  • Castle WS, Krezdorn AH (1975) Effect of citrus rootstock on root distribution and leaf mineral content of Orlando Tangelo trees. J Am Soc Hortic Sci 100:1–4

    CAS  Google Scholar 

  • Castle WS, Tucker DPH, Krezdorn AH and Youtsey CO (1993) Rootstocks for Florida Citrus. University of Florida, Florida, p 87

    Google Scholar 

  • Cerdá A, Fernández FG, Caro M (1977) The effects of sodium chloride in the irrigation water on the suculence of leaves of citrus rootstocks. An Edafol Agrobiol 36:393–398

    Google Scholar 

  • Cerdá A, Fernández FG, Caro M, Guillén MG (1979) Growth and mineral composition of two lemon varieties irrigated with saline waters. Agrochimica 23:387–396

    Google Scholar 

  • Cerdá A, Nieves M, Guillén MG (1990) Salt tolerance of lemon trees as affected by rootstock. Irrig Sci 11:245–249

    Article  Google Scholar 

  • Cerdá A, Pardines J, Botella MA, Martínez V (1995) Effect of potassium on growth, water relations, and the inorganic and organic solute contents for two maize cultivars grown under saline conditions. J Plant Nutr 18(4):839–851

    Article  Google Scholar 

  • Cerezo M, García-Agustín P, Serna MD, Primo-Millo E (1997) Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Sci 126:105–112

    Article  CAS  Google Scholar 

  • Cerezo M, García-Agustín P, Primo-Millo E (1999) Influence of chloride and transpiration on net 15NO3 uptake rate by Citrus roots. Ann Bot 84:117–120

    Article  CAS  Google Scholar 

  • Chapman HD (1968) The mineral nutrition of citrus. In: Reuther W, Batchelor LD, Webber HJ (eds) The citrus industry, vol 2. University of California Press, Davis, pp 127–289

    Google Scholar 

  • Combrink NJJ, Labuschagne N, Barnard RO, Kotze JM (1995) The effect of chloride on four different citrus rootstocks. S Afr J Plant Soil 12:95–98

    Article  CAS  Google Scholar 

  • Cooper WC (1961) Toxicity and accumulation of salts in citrus trees on various rootstocks in Texas. Fla St Hort Soc 74:95–104

    CAS  Google Scholar 

  • Cooper WC, Gorton BS (1951) Salt tolerance of various citrus rootstocks. Proc Rio Grande Valley Hortic Soc 5:46–52

    Google Scholar 

  • Cooper WC, Gorton BS (1952) Toxicity and accumulation of chloride salts in citrus on various rootstocks. Proc Am Soc Hortic Sci 59:143–146

    Article  CAS  Google Scholar 

  • Cooper WC, Gorton BS, Olson EO (1952) Ionic accumulation in citrus as influenced by rootstock and scion and concentration of salts and boron in the substrate. Plant Physiol 27:191–203

    Article  PubMed  CAS  Google Scholar 

  • Cooper WC, Reece PC, Furr JR (1962) Citrus breeding in Florida-past, present and future. Proc Fla State Hort Soc 75:5–13

    Google Scholar 

  • Cossman KF (1940) Citrus roots: their anatomy, osmotic pressure and periodicity of growth. Palest J Bot 3:65–103

    Google Scholar 

  • Cramer GR, Läuchi A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Läuchi A, Epstein E (1986) Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiol 81:792–797

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Lynch J, Läuchi A, Epstein E (1987) Influx of Na+, K+ and Ca into roots of salt-stressed cotton seedlings. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  • El-Desouky SA, Atawia AAR (1998) Growth performance of some Citrus rootstocks under saline conditions. Alexandria J Agr Res 43(3):231–254

    Google Scholar 

  • El-Hag E, Agib B, Sidahmed Osman A (1997) Response of lime seedling growth and chemical composition to salinity stress. Soil Sci Plant Anal 28:1093–1101

    Article  CAS  Google Scholar 

  • Feigin A (1985) Fertilization management of crops irrigated with saline water. Plant Soil 89:285–299

    Article  CAS  Google Scholar 

  • Ford HW (1954) The influence of rootstock and tree age on root distribution of citrus. Proc Am Soc Hortic Sci 63:137–142

    Google Scholar 

  • Forner JB, Forner-Giner MA, Alcaide A (2003) Forner-Alcaide 5 and Forner-Alcaide 13: two new citrus rootstocks released in Spain. HortScience 38:629–630

    Google Scholar 

  • Forner-Giner MA, Alcaide A, Primo-Millo E, Forner JB (2003) Performance of “Navelina” orange on 14 rootstocks in Northern Valencia (Spain). Sci Hortic-Amsterdam 98:223–232

    Article  Google Scholar 

  • Forner-Giner MA, Alcaide A, Primo-Millo E, Forner JB (2009) Performance of Forner-Alcaide 5 and Forner-Alcaide 13, hybrids of Cleopatra mandarin x Poncirus trifoliata, as salinity-tolerant citrus rootstocks. J Am Pomol Soc 63:72–80

    Google Scholar 

  • Forner-Giner MA, Legaz F, Primo-Millo E, Forner J (2011a) Nutritional responses of citrus rootstocks to salinity: performance of the new hybrids Forner-Alcaide 5 and Forner-Alcaide 13. J Plant Nut 34(9–11):1437–1452

    Article  CAS  Google Scholar 

  • Forner-Giner MA, Hueso JJ, Aguera JM, Legua P, Forner JB (2011b) Effects of citrus rootstocks on growth, yield and fruit quality of Navelate orange. J Food Agr Environ 9(2):400–403

    Google Scholar 

  • Gallasch PT, Dalton GS (1989) Selecting salt-tolerant citrus rootstocks. Aust J Agric Res 40:137–144

    Article  Google Scholar 

  • García-Legaz MF, García-Lidón A, Porras-Castillo I and Ortiz-Marcide JM (1992) Behaviour of different scion/stock combinations of lemons (C. Limon (L.) Burm. F.) against Cl and Na+ ions. In: Proceedings of the international society citriculture, Acireale, Italy, pp 397–399

    Google Scholar 

  • García-Legaz MF, Ortiz JM, García-Lidon AG, Cerdá A (1993) Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Physiol Plant 89:427–432

    Article  Google Scholar 

  • García-Lidón A, Ortiz JM, García-Legaz MF, Cerdá A (1998) Role of rootstock and scion on root and leaf ion accumulation in lemon trees grown under saline conditions. Fruits 53:89–97

    Google Scholar 

  • García-Sánchez F, Carvajal M, Sánchez-Pina MA, Martinez V, Cerda A (2000) Salinity resistance of Citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots. J Plant Physiol 156:724–730

    Article  Google Scholar 

  • Geisler G (1962) The morphogenetic effect of oxygen on roots. Plant Physiol 40:85–88

    Article  Google Scholar 

  • Gorham J, Wyn Jones RG, McDonnell E (1985) Some mechanisms of salt tolerance in crop plants. Plant Soil 89:15–40

    Article  CAS  Google Scholar 

  • Graham JH, Syvertsen JP (1985) Host determinants of mycorrhizal dependency of citrus rootstock seedlings. New Phytol 101:667–676

    Article  Google Scholar 

  • Grattan SR, Grieve CM (1992) Mineral element acquisition and growth response of plant grown in saline environments. Agric Ecosyst Environ 38(4):275–300

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grieve AM, Walker RR (1983) Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. Austr J Agric Res 34:133–143

    Article  CAS  Google Scholar 

  • Hanson DA, Kitz WO (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203

    Article  CAS  Google Scholar 

  • Hanson B, Grattan SR, Fulton A (1999) Agricultural salinity and drainage. DANR, no 3375. University of California Irrigation Program, University of California, Davis, CA, pp 13–17

    Google Scholar 

  • Hayward HE, Blair WM (1942) Some responses of Valencia orange seedlings to varying concentrations of chloride and hydrogen ions. Am J Bot 29:148–155

    Article  CAS  Google Scholar 

  • Huget JG (1976) Influence d´une irrigation localisëe sur l´enracinement de jeunes pommiers. Ann Agron 27:343–361

    Google Scholar 

  • Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5(3):233–238

    Article  PubMed  Google Scholar 

  • Katare DP, Nabi G, Azooz MM, Aeri V, Ahmad P (2012) Biochemical modifications and enhancement of psoralen content in salt-stressed seedlings of Psoralea corylifolia Linn. J Funct Environ Bot (in press)

    Google Scholar 

  • Kent LM, Läuchi A (1985) Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Environ 8:155–159

    Article  CAS  Google Scholar 

  • Kirkpatrick JD, Bitters WP (1969) Physiological and morphological responses of various citrus rootstocks to salinity. In: Proceedings of the 1st international citrus symposium, vol 1. Ed Chapman, pp 381–389

    Google Scholar 

  • Kriedermann PE, Barrs HD (1981) Citrus orchards. In: Kozlowski TT (ed) Water deficits and plant growth VI. Academic, New York, pp 325–417

    Google Scholar 

  • LaHaye PA, Epstein E (1969) Salt toleration by plants: enhancement with calcium. Science 166:395–396

    Article  PubMed  CAS  Google Scholar 

  • Lea-Cox JD, Syvertsen J (1993) Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    Article  CAS  Google Scholar 

  • Levy Y, Shalhevet J (1990) Ranking the salt tolerance of citrus rootstocks by juice analysis. Sci Hortic 45:89–98

    Article  Google Scholar 

  • Levy Y, Shalhevet J, Lifshitz J (1992) The effect of salinity on citrus rootstocks and scions. In: Proceedings of the international society citriculture, Acireale, Italy, pp 391–396

    Google Scholar 

  • Levy Y, Lifshitz J, De Malach Y, David Y (1999) The responsee of several citrus genotipes to high-salinity irrigation water. Hortscience 34(5):878–881

    Google Scholar 

  • Lloyd J, Howie H (1989) Response of orchard ‘Washington navel orange’, Citrus sinensis (L.) Osbeck to saline irrigation water I. Canopy characteristics and seasonal patterns in leaf osmotic potential, carbohydrates and ion concentrations. Aust J Agric Res 40:359–369

    Article  Google Scholar 

  • Lloyd J, Kriedemann PE, Syvertsen JP (1987a) Gas exchange, water relations and ion concentrations of leaves on salt-stressed Valencia orange Citrus sinensis (L.) Osbeck. Aust J Plant Physiol 14:387–396

    Article  Google Scholar 

  • Lloyd J, Syvertsen JP, Kriedemann PE (1987b) Salinity effects on leaf water relations and gas exchange of Valencia orange, Citrus sinensis (L.) Osbeck, on rootstock with different salt exclusion characteristics. Aust J Plant Physiol 14:605–617

    Article  Google Scholar 

  • Lloyd J, Kriedemann P, Aspinall D (1989) Comparative sensitivity of Prior Lisbon lemon and Valencia orange trees to foliar sodium and chloride concentrations. Plant Cell Environ 12:529–540

    Article  Google Scholar 

  • Lloyd J, Kriedemann P, Aspinall D (1990) Contrast between Citrus species in response to salinisation: an analysis of photosynthesis and water relations for different rootstock-scion combinations. Physiol Plant 78:236–246

    Article  Google Scholar 

  • MacHacha D, Pavel EW, Laker MC (2000) Rootstock/scion responses to variable salinity in irrigation water. In: Proceedings of the 6th international micro irrigation congress micro 2000, Cape Town, South Africa, 22–27, pp 1–6

    Google Scholar 

  • Mclure PE, Valoras NY, Letey J (1982) Anion uptake in maize rotos: Interactions between clorate and nitrate. Physiologia Plantarum. 68:107–112

    Google Scholar 

  • Mobaye RG, Milthorpe FL (1980) Response of seedling of three citrus-rootstock cultivars to salinity. Aust J Agric Res 31:117–124

    Article  Google Scholar 

  • Morinaga K, Sykes SR (2001) Effect of SALT and water stress on fruti quality, physiological responses, macro- and micro- element contens in leaves of Satsuma mandarin trees under greenhouse conditions. Jpn Agr Res Q 35(1):53–58

    Google Scholar 

  • Mouhaya W, Allario T, Brumos J, Andres F, Froelicher Y, Luro F, Talon M, Ollitrault P, Morillon R (2010) Funct Plant Biol 37(7):674–685

    Article  CAS  Google Scholar 

  • Moya J (2000) Procesos y factores que determinan la tolerancia a la salinidad en los cítricos. Absorción y distribución de iones cloruro en los patrones mandarino Cleopatra y citrange Carrizo. Tesis Doctoral, Valencia

    Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nastou A, Chartzoulakis K, Therios I, Bosabalidis A (1999) Leaf anatomical responses, ion content and CO2 assimilation in three lemon cultivars under NaCl salinity. Adv Hortic Sci 13(2):61–67

    Google Scholar 

  • Newcomb DA (1978) Selection of rootstocks for salnity and disease resistence Proc Int Soc Citruculture Australia 1:117–120. Sydney, Australia

    Google Scholar 

  • Nieves M, Martínez V, Cerdá A, Guillén MG (1990) Yield and mineral composition of Verna lemon trees as affected by salinity and rootstock combination. J Hortic Sci 65:359–366

    CAS  Google Scholar 

  • Nieves M, García A, Cerdá A (1991a) Effects of salinity and rootstock on lemon fruit quality. J Hortic Sci 66:127–130

    Google Scholar 

  • Nieves M, Cerdá A, Botella M (1991b) Salt tolerance of two lemon scions measured by leaf chloride and sodium accumulation. J Plant Nutr 14:623–636

    Article  Google Scholar 

  • Nieves M, Ruíz D, Cerdá A (1992) Influence of rootstock-scion combination in lemon trees salt tolerance. In: Proceedings of the international society citriculture, Acireale, Italy, pp 387–390

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  PubMed  CAS  Google Scholar 

  • Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97:592–598

    Article  CAS  Google Scholar 

  • Peynado A, Young R (1969) Relation of salt tolerance to cold hardiness of Redblush grapefruit and Valencia orange trees on various rootstocks. In: Proceedings of the 1st international citrus symposium, University of California, Riverside, CA, USA, pp 1793–1802

    Google Scholar 

  • Praloran JC (1971) Les agrumes. Maisonneuve et Larose, Paris, p 565

    Google Scholar 

  • Ream CL, Furr JR (1976) Salt tolerance of some Citrus species, relatives and hybrids tested as rootstocks. J Am Soc Hortic Sci 101:265–267

    CAS  Google Scholar 

  • Rodriguez-Gamir J, Ancillo G, Legaz F, Primo-Millo E, Forner-Giner MA (2012) Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. J Exp Bot 78:163–166

    Article  CAS  Google Scholar 

  • Romero-Aranda R, Syvertsen JP (1996) The influence of foliar-applied urea nitrogen and saline solutions on net gas exchange of Citrus leaves. J Am Soc Hortic Sci 121:501–506

    Google Scholar 

  • Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21:1243–1253

    Article  CAS  Google Scholar 

  • Ruiz D, Martínez V, Cerdá A (1997) Citrus response to salinity, growth and nutrient uptake. Tree Physiol 17:141–150

    Article  PubMed  CAS  Google Scholar 

  • Ruiz D, Martínez V, Cerdá A (1999) Demarcating specific ion (NaCl, Cl, Na+) and osmotic effects in the response of two citrus rootstocks to salinity. Sci Hort 80:213–224

    Article  CAS  Google Scholar 

  • Salem AT, El-Khorieby MK (1989) Response of some citrus rootstocks to different types of chloride salt treatments. Ann Agric Sci (Cairo) 34:1123–1137

    Google Scholar 

  • Sanderson J (1983) Water uptake by different regions of the barley root. Pathways of radial flow in relation to development of the endodermis. J Exp Bot 34:240–253

    Article  Google Scholar 

  • Storey R (1995) Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity. Aust J Plant Physiol 22:101–114

    Article  CAS  Google Scholar 

  • Storey R, Walker RR (1987) Some effects of root anatomy on K, Na, Cl loading of citrus roots and leaves. J Exp Bot 38:1769–1780

    Article  CAS  Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hortic 78:39–81

    Article  CAS  Google Scholar 

  • Swietlik D (1989) Pressure-induced water influxes through root systems of sour orange seedlings. J Am Soc Hortic Sci 114:139–143

    Google Scholar 

  • Sykes SR (1985b) A glasshouse screening procedure for identifying citrus hybrids which restrict chloride accumulation in shoot tissues. Aust J Agric Res 36:779–789

    Article  CAS  Google Scholar 

  • Sykes SR (1992) The inheritance of salt exclusion in woody perennial fruit species. Plant Soil 146:123–129

    Article  CAS  Google Scholar 

  • Sykes SR (2011) Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People’s Republic of China. Sci Hortic 128(4):443–449

    Article  CAS  Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition and leaf gas exchange of citrus rootstocks. J Am Soc Hortic Sci 110:865–869

    Google Scholar 

  • Syvertsen JP, Yelenosky G (1988) Salinity can enhance tolerance of citrus rootstock seedlings by modifying growth, water relations and mineral nutrition. J Am Soc Hort Sci 113:889–893

    Google Scholar 

  • Syvertsen JP, Lloyd J, Kriedemann PE (1988) Salinity and drought stress effects on foliar ion concentration, water relations and photosynthetic characteristics of orchard citrus. Aust J Agric Res 39:619–627

    Article  Google Scholar 

  • Tanner W, Beevers H (1990) Does transpiration have an essential funtion in long-distance ion transport in plants? Plant Cell Environ 13:745–750

    Article  CAS  Google Scholar 

  • Tozlu I, Moore GA, Guy CL (2000) Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata. Aust J Plant Physiol 27(1):35–42

    CAS  Google Scholar 

  • Tuzcu O, Kaplankiran M, Yesiloglu T, Cebeci Z (1997) The effects of rootstock-scion interaction on the distributions of rotos in citrus. In: Proceedings of the 5th ISCN international congress, Citrus nurseries, 75–81, 1997

    Google Scholar 

  • Waisel Y (1962) The effect of calcium on the uptake of monovalent ions by excised barley roots. Physiol Plant 15:709–724

    Article  CAS  Google Scholar 

  • Walker RR (1986) Sodium exclusion and potassium-sodium selectivity in salt-treated trifoliate orange (Poncirus trifoliata) and Cleopatra mandarin (Citrus reticulata) plants. Aust J Plant Physiol 13:293–303

    Article  CAS  Google Scholar 

  • Walker RR, Törökfalvy E, Downton WJS (1982) Photosynthetic responses of the citrus varieties Rangpur Lime and Etrog Citron to salt treatment. Aust J Plant Physiol 9:783–790

    Article  Google Scholar 

  • Walker RR, Törökfalvy E, Grieve AM, Prior LD (1983) Water relations and ion concentrations of leaves on salt-treated citrus plants. Aust J Plant Physiol 10:265–277

    Article  CAS  Google Scholar 

  • Walker RR, Sedgley M, Blesing MA, Douglas TJ (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J Exp Bot 35:1481–1494

    Article  CAS  Google Scholar 

  • Walker RR, Blackmore DH, Sun Q (1993) Carbon dioxide assimilation and foliar ion concentrations in leaves of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4. Aust J Plant Physiol 20:173–185

    Article  CAS  Google Scholar 

  • Wutscher HK (1979) Citrus rootstocks. In: Horticultural reviews I. A.V.I, Westport, pp 237–269

    Google Scholar 

  • Zekri M (1991) Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci Hortic 47:305–315

    Article  CAS  Google Scholar 

  • Zekri M (1993) Salinity and calcium effects on emergence, growth and mineral composition of seedlings of eight citrus rootstocks. J Hortic Sci 68:53–62

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plant 77:99–106

    Article  Google Scholar 

  • Zekri M, Parsons LR (1990a) Comparative effects of NaCl and polyethylene glycol on root distribution, growth and stomatal conductance of sour orange seedlings. Plant Soil 129:137–143

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1990b) Calcium influences growth and leaf mineral concentration of citrus under saline conditions. HortScience 25:784–786

    CAS  Google Scholar 

  • Zekri M, Parsons LR (1992) Salinity tolerance of Citrus rootstocks: effects of salt on root and leaf mineral concentrations. Plant Soil 147:171–181

    Article  CAS  Google Scholar 

  • Zid, Grignon C (1985) Sodium-calcium interactions in leaves of Citrus aurantium grown in the presence of NaCl. Physiol Veg 23:895–903

    Google Scholar 

  • Zid E, Grignon C (1986) Comparative effects of NaCl, KCl and Na2SO4 on the growth and mineral nutrition of young Citrus aurantium L. Acta-Oecologica, -Oecologica-Plantarum 7(4): 407–416

    Google Scholar 

Download references

Acknowledgments

This work was financed by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RTA2008-0060) and Generalitat Valenciana. G. Ancillo and M.A. Forner-Giner are recipient of a contract from Conselleria de Agricultura, Pesca y Alimentación (Generalitat Valenciana, Spain) under Proy_IVIA09/03 and Proy_IVIA09/04, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Ancillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Forner-Giner, M.A., Ancillo, G. (2013). Breeding Salinity Tolerance in Citrus Using Rootstocks. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_14

Download citation

Publish with us

Policies and ethics