Skip to main content

System MgO-SiO2

  • Chapter
  • First Online:
Phase Diagrams for Geoscientists

Abstract

The two oxides, MgO and SiO2, account for 85 % of the Earth’s mantle. Thus, the phase relations in the system MgO-SiO2 (MS), shown in Figs. 2.1 and 2.2, are fundamental for understanding the mineral composition of the mantle. There are five enstatite polymorphs (Mg2Si2O6): protoenstatite, orthoenstatite, low clinoenstatite, high-T clinoenstatite, and high-P clinoenstatite, which can coexist in silica undersaturated compositions with forsterite, wadsleyite, or ringwoodite (Mg2SiO4). At high pressures, high-P clinoenstatite breaks down to majorite at the temperatures above 1,600 °C, and to wadsleyite + stishovite or ringwoodite + stishovite at lower temperatures. Akimotoite and MgSiO3 perovskite appear at progressively still higher pressures. The MgSiO3 perovskite can coexist with periclase (MgO) in the lower mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasparik, T.: Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contrib. Miner. Petrol. 102, 389–405 (1989)

    Article  Google Scholar 

  2. Finger, L.W., Ko, J., Hazen, R.M., Gasparik, T., Hemley, R.J., Prewitt, C.T., Weidner, D.J.: Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle. Nature 341, 140–142 (1989)

    Article  Google Scholar 

  3. Gasparik, T.: A thermodynamic model for the enstatite-diopside join. Am. Mineral. 75, 1080–1091 (1990)

    Google Scholar 

  4. Gasparik, T.: Phase relations in the transition zone. J. Geophys. Res. 95, 15751–15769 (1990)

    Article  Google Scholar 

  5. Pacalo, R.E.G., Gasparik, T.: Reversals of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J. Geophys. Res. 95, 15853–15858 (1990)

    Article  Google Scholar 

  6. Presnall, D.C., Gasparik, T.: Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4) – majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J. Geophys. Res. 95, 15771–15777 (1990)

    Article  Google Scholar 

  7. Gasparik, T.: Melting experiments on the enstatite-pyrope join at 80–152 kbar. J. Geophys. Res. 97, 15181–15188 (1992)

    Article  Google Scholar 

  8. Wang, Y., Gasparik, T., Liebermann, R.C.: Modulated microstructure in synthetic majorite. Am. Mineral. 78, 1165–1173 (1993)

    Google Scholar 

  9. Zhang, J., Liebermann, R.C., Gasparik, T., Herzberg, C.T., Fei, Y.: Melting and subsolidus relations of SiO2 at 9–14 GPa. J. Geophys. Res. 98, 19785–19793 (1993)

    Article  Google Scholar 

  10. Gasparik, T.: A petrogenetic grid for the system MgO–Al2O3–SiO2. J. Geol. 102, 97–109 (1994)

    Article  Google Scholar 

  11. Gasparik, T.: Melting experiments on the enstatite-diopside join at 70–224 kbar, including the melting of diopside. Contrib. Miner. Petrol. 124, 139–153 (1996)

    Article  Google Scholar 

  12. Gasparik, T.: A temperature-pressure calibration grid for multianvil experiments based on phase relations in the system CaO–MgO–SiO2. Rev. High. Press. Sci. Technol. 7, 9–11 (1998)

    Article  Google Scholar 

  13. Akaogi, M., Ross, N.L., McMillan, P., Navrotsky, A.: The Mg2SiO4 polymorphs (olivine, modified spinel and spinel) – thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am. Mineral. 69, 499–512 (1984)

    Google Scholar 

  14. Akaogi, M., Navrotsky, A., Yagi, T., Akimoto, S.: Pyroxene-garnet transformation: thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani, M.H., Syono, Y. (eds.) High-Pressure Research in Mineral Physics, pp. 251–260. Terrapub, Tokyo (1987)

    Google Scholar 

  15. Akimoto, S., Katsura, T., Syono, Y., Fujisawa, H., Komada, E.: Polymorphic transition of pyroxenes FeSiO3 and CoSiO3 at high pressures and temperatures. J. Geophys. Res. 70, 5269–5278 (1965)

    Article  Google Scholar 

  16. Allen, E.T.,Wright, F.E.,Clement, J.K.: Minerals of the composition MgSiO3; a case of tetramorphism. Am J Sci (4th ser). 22, 385–438 (1906)

    Google Scholar 

  17. Anastasiou, P., Seifert, F.: Solid solubility of Al2O3 in enstatite at high temperatures and 1–5 kb water pressure. Contrib. Miner. Petrol. 34, 272–287 (1972)

    Article  Google Scholar 

  18. Angel, R.J., Chopelas, A., Ross, N.L.: Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358, 322–324 (1992)

    Article  Google Scholar 

  19. Atlas, L.: The polymorphism of MgSiO3 and solid-state equilibria in the system MgSiO3–CaMgSi2O6. J. Geol. 60, 125–147 (1952)

    Article  Google Scholar 

  20. Berman, R.G., Brown, T.H.: Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO-Fe2O3-Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib. Miner. Petrol. 89, 168–183 (1985)

    Article  Google Scholar 

  21. Bohlen, S.R., Boettcher, A.L.: The quartz = coesite transformation: a precise determination and the effects of other components. J. Geophys. Res. 87, 7073–7078 (1982)

    Article  Google Scholar 

  22. Bowen, N.L., Andersen, O.: The binary system MgO–SiO2. Am J Sci (4th ser). 37, 487–500 (1914)

    Google Scholar 

  23. Boyd, F.R., England, J.L.: The rhombic enstatite-clinoenstatite inversion. Carnegie. Inst. Wash. Yearb. 64, 117–120 (1965)

    Google Scholar 

  24. Boyd, F.R., England, J.L., Davis, B.T.C.: Effects of pressure on the melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res. 69, 2101–2109 (1964)

    Article  Google Scholar 

  25. Brousse, C., Newton, R.C., Kleppa, O.J.: Enthalpy of formation of forsterite, enstatite, åkermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry. Geochim. Cosmochim. Acta 48, 1081–1088 (1984)

    Article  Google Scholar 

  26. Carlson, W.D.: Evidence against the stability of orthoenstatite above 1005°C at atmospheric pressure in CaO–MgO–SiO2. Geophys. Res. Lett. 12, 409–411 (1985)

    Article  Google Scholar 

  27. Carlson, W.D.: Reversed pyroxene phase equilibria in CaO–MgO–SiO2 at one atmosphere pressure. Contrib. Miner. Petrol. 92, 218–224 (1986)

    Article  Google Scholar 

  28. Carlson, W.D.: Subsolidus phase equilibria on the forsterite-saturated join Mg2Si2O6–CaMgSi2O6 at atmospheric pressure. Am. Mineral. 73, 232–241 (1988)

    Google Scholar 

  29. Carlson, W.D., Swinnea, J.S., Miser, D.E.: Stability of orthoenstatite at high temperature and low pressure. Am. Mineral. 73, 1255–1263 (1988)

    Google Scholar 

  30. Chatillon-Colinet, C., Newton, R.C., Perkins, D., Kleppa, O.J.: Thermochemistry of (Fe2+, Mg)SiO3 orthopyroxene. Geochim. Cosmochim. Acta 47, 1597–1603 (1983)

    Article  Google Scholar 

  31. Chen, C.-H., Presnall, D.C.: The system Mg2SiO4-SiO2 at pressures up to 25 kilobars. Am. Mineral. 60, 398–406 (1975)

    Google Scholar 

  32. Cohen, L.H., Klement, W.: High-low quartz inversion: determination to 35 kilobars. J. Geophys. Res. 72, 4245–4251 (1967)

    Article  Google Scholar 

  33. Dallwitz, W.B., Green, D.H., Thompson, J.E.: Clinoenstatite in a volcanic rock from the cape vogel area, papua. J. Petrol. 7, 375–403 (1966)

    Article  Google Scholar 

  34. Davis, B.T.C., England, J.L.: The melting of forsterite up to 50 kilobars. J. Geophys. Res. 69, 1113–1116 (1964)

    Article  Google Scholar 

  35. Grover, J.E.: The stability of low-clinoenstatite in the system Mg2Si2O6–CaMgSi2O6 (abs). Eos. Trans. AGU. 53, 539 (1972)

    Google Scholar 

  36. Grover, J.E.: Two problems in pyroxene mineralogy. PhD thesis, Yale University, New Haven (1972b)

    Google Scholar 

  37. Haraldsen, H.: Beiträge zur Kenntnis de thermischen Umbildung des talks. Neues. Jahrb. 61A, 139–164 (1930) (in German)

    Google Scholar 

  38. Hatch, D.M., Ghose, S.: Symmetry analysis of the phase transition and twinning in MgSiO3 garnet: implications to mantle mineralogy. Am. Mineral. 74, 1221–1224 (1989)

    Google Scholar 

  39. Herzberg, C.T., O’Hara, M.J.: Origin of mantle peridotite and komatiite by partial melting. Geophys. Res. Lett. 12, 541–544 (1985)

    Article  Google Scholar 

  40. Herzberg, C.T., Ohtani, E.: Origin of komatiite at high pressures. Earth. Planet. Sci. Lett. 88, 321–329 (1988)

    Article  Google Scholar 

  41. Herzberg, C.T., Zhang, J.: Melting experiments in the systems CaO–MgO–Al2O3–SiO2 and MgO-SiO2 at 3 to 15 GPa. Am. Mineral. 83, 491–500 (1998)

    Google Scholar 

  42. Herzberg, C.T., Feigenson, M., Skuba, C., Ohtani, E.: Majorite fractionation recorded in the geochemistry of peridotites from South Africa. Nature 332, 823–826 (1988)

    Article  Google Scholar 

  43. Ito, E., Navrotsky, A.: MgSiO3 ilmenite: calorimetry, phase equilibria, and decomposition at atmospheric pressure. Am. Mineral. 70, 1020–1026 (1985)

    Google Scholar 

  44. Ito, E., Takahashi, E.: Ultrahigh pressure transformations and the constitution of the deep mantle. In: Manghnani, M.H., Syono, Y. (eds.) High Pressure Research in Mineral Physics. Geophys Monograph 39, pp 221–229. American Geophysical Union, Washington DC (1987)

    Google Scholar 

  45. Ito, E., Takahashi, E.: Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res. 94, 10637–10646 (1989)

    Article  Google Scholar 

  46. Jackson, I.: Melting of the silica isotypes SiO2, BeF2, and GeO2 at elevated pressures. Phys. Earth. Planet. Inter. 13, 218–231 (1976)

    Article  Google Scholar 

  47. Kanzaki, M.: Ultrahigh-pressure phase relations in the system Mg4Si4O12–Mg3Al2Si3O12. Phys. Earth. Planet. Inter. 49, 168–175 (1987)

    Article  Google Scholar 

  48. Kanzaki, M.: Melting of silica up to 7 GPa. J. Am. Ceram. Soc. 73, 3706–3707 (1990)

    Article  Google Scholar 

  49. Kanzaki, M.: Ortho/clinoenstatite transition. Phys. Chem. Miner. 17, 726–730 (1991)

    Article  Google Scholar 

  50. Kato, T., Kumazawa, M.: Garnet phase of MgSiO3 filling the pyroxene-ilmenite gap at very high temperature. Nature 316, 803–805 (1985)

    Article  Google Scholar 

  51. Kato, T., Kumazawa, M.: Melting and phase relations in the system Mg2SiO4-MgSiO3 at 20 GPa under hydrous conditions. J. Geophys. Res. 91, 9351–9355 (1986)

    Article  Google Scholar 

  52. Katsura, T., Ito, E.: The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 15663–15670 (1989)

    Article  Google Scholar 

  53. Kiseleva, I.A., Ogorodova, L.P., Topor, L.P., Chigareva, O.G.: Thermochemical studies of CaO–MgO–SiO2 system. Geokhimiya 1979, 1821–1825 (1979)

    Google Scholar 

  54. Komatsu, M.: Clinoenstatite in volcanic rocks from the Bonin Islands. Contrib. Miner. Pet. 74, 329–338 (1980)

    Article  Google Scholar 

  55. Krupka, K.M., Hemingway, B.S., Robie, R.A., Kerrick, D.M.: High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite and wollastonite. Am. Mineral. 70, 261–271 (1985)

    Google Scholar 

  56. Krupka, K.M., Robie, R.A., Hemingway, B.S., Kerrick, D.M., Ito, J.: Low-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite. Am. Mineral. 70, 249–260 (1985)

    Google Scholar 

  57. Kushiro, I., Yoder Jr., H.S., Nishikawa, M.: Effect of water on the melting of enstatite. Geol. Soc. Am. Bull. 79, 1685–1692 (1968)

    Article  Google Scholar 

  58. Lindsley, D.H.: Ferrosilite. Carnegie. Inst. Wash. Yearb. 64, 148–150 (1965)

    Google Scholar 

  59. Lindsley, D.H., Munoz, J.L.: Ortho-clino inversion in ferrosilite. Carnegie. Inst. Wash. Yearb. 67, 86–88 (1969)

    Google Scholar 

  60. Lindsley, D.H., Grover, J.E., Davidson, P.M.: The thermodynamics of the Mg2Si2O6–CaMgSi2O6 join: a review and an improved model. In: Newton, R.C., Navrotsky, A., Wood, B.J. (eds.) Thermodynamics of Minerals and Melts, pp. 149–175. Springer-Verlag, New York (1981)

    Chapter  Google Scholar 

  61. McMillan, P., Akaogi, M., Ohtani, E., Williams, Q., Nieman, R., Sato, R.: Cation disorder in garnets along the Mg3Al2Si3O12–Mg4Si4O12 join: an infrared, Raman and NMR study. Phys. Chem. Miner. 16, 428–435 (1989)

    Article  Google Scholar 

  62. Mirwald, P.W., Massonne, H.-J.: The low-high quartz and quartz-coesite transition to 40 kbar between 600° and 1600°C and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition. J. Geophys. Res. 85, 6983–6990 (1980)

    Article  Google Scholar 

  63. Newton, R.C., Charlu, P.A., Anderson, P.A.M., Kleppa, O.J.: Thermochemistry of synthetic clinopyroxenes in the join CaMgSi2O6-Mg2Si2O6. Geochim. Cosmochim. Acta 43, 55–60 (1979)

    Article  Google Scholar 

  64. Nickel, K.G., Brey, G.: Subsolidus orthopyroxene-clinopyroxene systematics in the system CaO–MgO–SiO2 to 60 kbar: a re-evaluation of the regular solution model. Contrib. Miner. Pet. 87, 35–42 (1984)

    Article  Google Scholar 

  65. Ohtani, M., Kumazawa, M.: Melting of forsterite Mg2SiO4 up to 15 GPa. Phys. Earth. Planet. Inter. 27, 32–38 (1981)

    Article  Google Scholar 

  66. Ozima, M., Akimoto, S.: Flux growth of single crystals of MgGeO3 polymorphs (orthopyroxene, clinopyroxene, and ilmenite) and their phase relations and crystal structures. Am. Mineral. 68, 1199–1205 (1983)

    Google Scholar 

  67. Peacor, D.R.: The crystal structure of CoGeO3. Z Kristallogr 126, 299–306 (1968)

    Article  Google Scholar 

  68. Perrotta, A.J., Stephenson, D.A.: Clinoenstatite: high-low inversion. Science 148, 1090–1091 (1965)

    Article  Google Scholar 

  69. Presnall, D.C., Walter, M.J.: Melting of forsterite, Mg2SiO4, from 9.7 to 16.5 GPa. J. Geophys. Res. 98, 19777–19783 (1993)

    Article  Google Scholar 

  70. Presnall, D.C., Weng, Y.-H., Milholland, C.S., Walter, M.J.: Liquidus phase relations in the system MgO–MgSiO3 at pressures up to 25 GPa-constraints on crystallization of a molten hadean mantle. Phys. Earth. Planet. Inter. 107, 83–95 (1998)

    Article  Google Scholar 

  71. Reid, A.M., Cohen, A.J.: Some characteristics of enstatite from enstatite achondrites. Geochim. Cosmochim. Acta 31, 661–672 (1967)

    Article  Google Scholar 

  72. Riecker, R.E., Rooney, T.P.: Deformation and polymorphism of enstatite under shear stress. Geol. Soc. Am. Bull. 78, 1045–1054 (1967)

    Article  Google Scholar 

  73. Robie, R.A., Hemingway, B.S., Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull. 1452, 456 (1978)

    Google Scholar 

  74. Ross, N.L., Navrotsky, A.: Study of the MgGeO3 polymorphs (orthopyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy, and phase equilibria. Am. Mineral. 73, 1355–1365 (1988)

    Google Scholar 

  75. Sameshima, T., Paris, J.-P., Black, P.M., Heming, R.F.: Clinoenstatite-bearing lava from Népui, New Caledonia. Am. Mineral. 68, 1076–1082 (1983)

    Google Scholar 

  76. Sawamoto, H.: Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200°C: phase stability and properties of tetragonal garnet. In: Manghnani, M.H., Syono, Y. (eds.) High-Pressure Research in Mineral Physics, pp. 209–219. Terrapub, Tokyo (1987)

    Google Scholar 

  77. Sclar, C.B., Carrison, L.C., Schwartz, C.M.: High-pressure stability field of clinoenstatite and the orthoenstatite-clinoenstatite transition (abs). Eos. Trans. AGU. 45, 121 (1964)

    Google Scholar 

  78. Sharma, S.K., Ghose, S., Urmos, J.P.: Raman study of high-temperature phase transitions in ortho- and clinoenstatite (abs). Eos. Trans. AGU. 68, 433 (1987)

    Google Scholar 

  79. Smith, J.V.: Magnesium pyroxenes at high temperature: inversion in clinoenstatite. Nature 222, 256–257 (1969)

    Article  Google Scholar 

  80. Smyth, J.R.: Orthopyroxene-high-low-clinopyroxene inversions. Earth. Planet. Sci. Lett. 6, 406–407 (1969)

    Article  Google Scholar 

  81. Smyth, J.R.: The high temperature crystal chemistry of clinohypersthene. Am. Mineral. 59, 1069–1082 (1974)

    Google Scholar 

  82. Smyth, J.R., Burnham, C.W.: The crystal structures of high and low clinohypersthene. Earth. Planet. Sci. Lett. 14, 183–189 (1972)

    Article  Google Scholar 

  83. Stephenson, D.A., Sclar, C.B., Smith, J.V.: Unit cell volumes of synthetic orthoenstatite and low clinoenstatite. Miner. Mag. 35, 838–846 (1966)

    Article  Google Scholar 

  84. Takahashi, E.: Melting of dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9382 (1986)

    Article  Google Scholar 

  85. Trommsdorff, V., Wenk, H.-R.: Terrestrial metamorphic clinoenstatite in kinks of bronzite crystals. Contrib. Miner. Pet. 19, 158–168 (1968)

    Article  Google Scholar 

  86. Tuttle, O.F., Bowen, N.L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem. 74, 153 (1958)

    Google Scholar 

  87. Yamamoto, K., Akimoto, S.: The system MgO–SiO2–H2O at high pressures and temperatures – stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å-phase. Am. J. Sci. 277, 288–312 (1977)

    Article  Google Scholar 

  88. Yamanaka, T., Hirano, M., Takeuchi, Y.: A high temperature transition in MgGeO3 from clinopyroxene (C2/c) type to orthopyroxene (Pbca) type. Am. Mineral. 70, 365–374 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Gasparik .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gasparik, T. (2014). System MgO-SiO2 . In: Phase Diagrams for Geoscientists. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5776-3_2

Download citation

Publish with us

Policies and ethics