Skip to main content

Segmenting Carotid in CT Using Geometric Potential Field Deformable Model

  • Conference paper
  • First Online:
Mathematical Methodologies in Pattern Recognition and Machine Learning

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 30))

  • 2730 Accesses

Abstract

We present a method for the reconstruction of vascular geometries from medical images. Image denoising is performed using vessel enhancing diffusion, which can smooth out image noise and enhance vessel structures. The Canny edge detection technique, which produces object edges with single pixel width, is used for accurate detection of the lumen boundaries. The image gradients are then used to compute the geometric potential field which gives a global representation of the geometric configuration. The deformable model uses a regional constraint to suppress calcified regions for accurate segmentation of the vessel geometries. The proposed framework shows high accuracy when applied to the segmentation of the carotid arteries from CT images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Dayem, A., El-Sakka, M.: Carotid artery ultrasound image segmentation using fuzzy region growing. In: International Conference on Image Analysis and Recognition, Springer, pp. 869–878 (2005)

    Google Scholar 

  2. Antiga, L., Ene-Iordache, B. Remuzzi, A.: Computational geometry for patient-specific reconstruction and meshing of blood vessels from mr and ct angiography. IEEE T-MI 22(5), 674–684 (2003)

    Article  Google Scholar 

  3. Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097–1112 (2008)

    Article  Google Scholar 

  4. Augst, A.D., Barratt, D.C., Hughes, A.D., McG Thom, S.A., Xy, X.Y.: Various issues relating to computational fluid dynamics simulations of carotid bifurcation flow based on models reconstructed from three-dimensional ultrasound images. Proc. Inst. Mech. Eng. H, J. Eng. Med. 217(5), 393–403 (2003)

    Google Scholar 

  5. Cebral, J.R., Lohner, R., Soto, O., Choyke, P.L., Yim, P.J.: Patient-specific simulation of carotid artery stenting using computational fluid dynamics. In: MICCAI, Springer pp. 153–160 (2001)

    Google Scholar 

  6. Cebral, J.R., Hernandez, M., Frangi, A.F.: Computational analysis of blood flow dynamics in cerebral aneurysms from cta and 3d rotational angiography image data. In: International Congress on Computational Bioengineering, pp. 191–198 (2003)

    Google Scholar 

  7. Cebral, J.R., Castro, M.A., Lohner, R., Burgess, J.E., Pergolizzi, R., Putman, C.M.: Recent developments in patient-specific image-based modeling of hemodynamics. In: ENIEF04 (2004)

    Google Scholar 

  8. Canny, J.: A computational approach to edge detection. IEEE T-PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  9. Deriche, R.: Using canny’s criteria to derive a recursively implemented optimal edge detector. IJCV 1(2), 167–187 (1987)

    Article  Google Scholar 

  10. Deschamps, T., Schwartz, P., Trebotich, D., Colella, P., Saloner, D., Malladi, R.: Vessel segmentation and blood flow simulation using level-sets and embedded boundary methods. In: Computer Assisted Radiology and Surgery, pp. 75–80 (2004)

    Google Scholar 

  11. Ding, S., Tu, J., Cheung, C., Beare, R., Phan, T., Reutens, D., Thien, F.: Geometric model generation for CFD simulation of blood and air flows. In: International Conference on Bioinformatics and Biomedical Engineering, Elsevier pp. 1335–1338 (2007)

    Google Scholar 

  12. Enquobahrie, A., Ibanez, L., Bullitt, E., Aylward, S.: Vessel enhancing diffusion filter. Insight J., IEEE (2007)

    Google Scholar 

  13. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: MICCAI, pp. 130–137, Springer (1998)

    Google Scholar 

  14. Gil, J.D., Ladak, H.M., Steinman, D.A., Frenster, A.: Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med. Phys. 27(6), 1333–1342 (2000)

    Article  Google Scholar 

  15. Giordana, S., Sherwin, S.J., Peiro, J., Doorly, D.J., Papaharilaou, Y., Caro, C.G., Watkins, N., Cheshire, N., Jackson, M., Bicknall, C., Zervas, V.: Automated classification of peripheral distal by-pass geometries reconstructed from medical data. J. Biomech. 38(1), 47–62 (2005)

    Article  Google Scholar 

  16. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, 2nd edn. Kitware, Inc. (2005)

    Google Scholar 

  17. Ladak, H.M., Milner, J.S., Steinman, D.A.: Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J. Biomech. Eng. 122(1), 96–99 (2000)

    Article  Google Scholar 

  18. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modelling with front propagation: A level set approach. IEEE T-PAMI 17(2), 158–175 (1995)

    Article  Google Scholar 

  19. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: A scale space representation of vessel structures. Med. Image Anal. 10(6), 815–825 (2006)

    Article  Google Scholar 

  20. Mori, D., Yamaguchi, T.: Construction of the CFD model of the aortic arch based on mr images and simulation of the blood flow. In: International Workshop on Medical Imaging and Augmented Reality, pp. 111–116 (2001)

    Google Scholar 

  21. Nanduri, J.R., Pino-Romainville, F.A., Celik, I.: CFD mesh generation for biological flows: Geometry reconstruction using diagnostic images. Comput. Fluids 38(5), 1026–1032 (2009)

    Article  MATH  Google Scholar 

  22. Nilsson, B., Heyden, A.: A fast algorithm for level set-like active contours. Pattern Recogn. Lett. 24(9), 1311–1337 (2003)

    Article  Google Scholar 

  23. Peiro, J., Sherwin, S.J., Giordana, S.: Automatic reconstruction of a patient-specific high-order surface representation and its application to mesh generation for CFD calculations. Med. Biol. Eng. Comput. 46(11), 1069–1083 (2008)

    Article  Google Scholar 

  24. Petrou, M., Kittler, J.: Optimal edge detectors for ramp edges. IEEE T-PAMI 13(5), 483–491 (1991)

    Article  Google Scholar 

  25. Sekiguchi, H., Sugimoto, N., Eiho, S., Hanakawa, T., Urayama, S.: Blood vessel segmentation for head MRA using branch-based region growing. Syst. Comput. Jpn. 36(5), 80–88 (2005)

    Article  Google Scholar 

  26. Steinman, D.A.: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30(4), 483–497 (2002)

    Article  Google Scholar 

  27. Steinman, D.A., Thomas, J.B., Ladak, H.M., Milner, J.S., Rutt, B.K., Spence, J.D.: Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and mri. Mag. Resonan. Med. 47(1), 149–159 (2002)

    Article  Google Scholar 

  28. Svensson, J., Gardhagen, R., Heiberg, E., Ebbers, T., Loyd, D., Lanne, T., Karlsson, M.: Feasibility of patient specific aortic blood flow CFD simulation. In: MICCAI, Springer pp. 257–263 (2006)

    Google Scholar 

  29. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Ann. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  30. Taylor, C.A., Steinman, D.A.: Image-based modeling of blood flow and vessel wall dynamics: Applications, methods and future directions. Ann. Biomed. Eng. 38(3), 1188–1203 (2010)

    Article  Google Scholar 

  31. Tokuda, Y., Song, M.H., Ueda, Y., Usui, A., Toshiaki, A., Yoneyama, S., Maruyama, S.: Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass. Eur. J. Cardio-thoracic Surg. 33(2), 164–167 (2008)

    Article  Google Scholar 

  32. Wang, K.C., Dutton, R.W., Taylor, C.A.: Improving geometric model construction for blood flow modeling. IEEE Eng. Med. Biol. Mag. 18(6), 33–39 (1999)

    Article  Google Scholar 

  33. Xu, X.Y., Long, Q., Collins, M.W., Bourne, M., Griffith, T.M.: Reconstruction of blood flow patterns in human arteries. Proc. Inst. Mech. Eng. H, J. Eng. Med. 213(5), 411–421 (1999)

    Google Scholar 

  34. Yeo, S.Y., Xie, X., Sazonov, I., Nithiarasu, P.: Geometric potential force for the deformable model. In: BMVC, BMVA (2009)

    Google Scholar 

  35. Yeo, S.Y., Xie, X., Sazonov, I., Nithiarasu, P.: Level set based automatic segmentation of human aorta. In: International Conference on Computational and Mathematical Biomedical Engineering, CMBE (2009)

    Google Scholar 

  36. Yeo, S.Y., Xie, X., Sazonov, I., Nithiarasu, P.: Geometrically induced force interaction for three-dimensional deformable models. IEEE T-IP 20(5), 1373–1387 (2011)

    MathSciNet  Google Scholar 

  37. Yi, J., Ra, J.B.: A locally adaptive region growing algorithm for vascular segmentation. Int. J. Imag. Syst. Technol. 13(4), 208–214 (2003)

    Article  Google Scholar 

  38. Yim, P.J., Cebral, J.J., Mullick, R., Marcos, H.B., Choyke, R.L.: Vessel surface reconstruction with a tubular deformable model. IEEE T-MI 20(12), 1411–1421 (2001)

    Article  Google Scholar 

  39. Younis, H.F., Kaazempur-Mofrad, M.R., Chan, R.C., Isasi, A.G., Hinton, D.P., Chau, A.H., Kim, L.A., Kamm, R.D.: Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3(1), 17–32 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghua Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Yeo, S.Y., Xie, X., Sazonov, I., Nithiarasu, P. (2013). Segmenting Carotid in CT Using Geometric Potential Field Deformable Model. In: Latorre Carmona, P., Sánchez, J., Fred, A. (eds) Mathematical Methodologies in Pattern Recognition and Machine Learning. Springer Proceedings in Mathematics & Statistics, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5076-4_10

Download citation

Publish with us

Policies and ethics