Skip to main content

Graph Applications to RNA Structure and Function

  • Chapter
  • First Online:
Biophysics of RNA Folding

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 3))

Abstract

RNA’s modular, hierarchical, and versatile structure makes possible diverse, essential regulatory and catalytic roles in the cell. It also invites systematic modeling and simulation approaches. Among the diverse computational and theoretical approaches to model RNA structures, graph theory has been applied in various contexts to study RNA structure and function. Here, we describe graph-theoretical approaches for predicting and designing novel RNA topologies using graphical representations of RNA secondary structure, clustering tools, and a build-up procedure. Recent applications to noncoding RNA classification, RNA structure analysis and prediction, and novel RNA design are also described. As evident from the work of many groups in the mathematical and biological sciences, graph-theoretical approaches offer a fruitful avenue for discovering novel RNA topologies and designing new structural classes of RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hashimi HM et al (2002) Towards structural genomics of RNA: rapid NMR resonance ­assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. J Mol Biol 318(3):637–649

    Article  PubMed  CAS  Google Scholar 

  • Bachellerie JP et al (2002) The expanding snoRNA world. Biochimie 84(8):775–790

    Article  PubMed  CAS  Google Scholar 

  • Bakhtin Y, Heitsch C (2008) Large Deviations for Random Trees. J Stat Phys 132(3):551–560

    Article  PubMed  CAS  Google Scholar 

  • Bakhtin Y, Heitsch CE (2009) Large deviations for random trees and the branching of RNA secondary structures. Bull Math Biol 71(1):84–106

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Bonabeau E (2003) Scale-free networks. Sci Am 288(5):60–69

    Article  PubMed  Google Scholar 

  • Benedetti G, Morosetti S (1996) A graph-topological approach to recognition of pattern and similarity in RNA secondary structures. Biophys Chem 59:179–184

    Article  PubMed  CAS  Google Scholar 

  • Bindewald E et al (2008) Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 27(3):299–308

    Article  PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular networks: the top-down view. Science 301(5641):1864–1865

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (2009) Riboswitches: from ancient gene-control systems to modern drug targets. Future Microbiol 4(7):771–773

    Article  PubMed  Google Scholar 

  • Breaker RR (2010) Riboswitches and the RNA World. Cold Spring Harb Perspect Biol 1:4(2) pii: a003566

    Google Scholar 

  • Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7(Suppl):932–934

    Article  PubMed  CAS  Google Scholar 

  • Carothers JM et al (2004) Informational complexity and functional activity of RNA structures. J Am Chem Soc 126(16):5130–5137

    Article  PubMed  CAS  Google Scholar 

  • Chastain M, Tinoco I Jr (1991) Structural elements in RNA. Prog Nucleic Acid Res Mol Biol 41:131–177

    Article  PubMed  CAS  Google Scholar 

  • Chiu WW et al (2005) Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79(13):8303–8315

    Article  PubMed  CAS  Google Scholar 

  • Chushak Y, Stone MO (2009) In silico selection of RNA aptamers. Nucleic Acids Res 37(12):e87

    Article  PubMed  Google Scholar 

  • Cruz JA, Westhof E (2011) Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 8(6):513–521

    Article  PubMed  CAS  Google Scholar 

  • Das R, Baker D (2007) Automated de novo prediction of native-like RNA tertiary structures. Proc Natl Acad Sci USA 104(37):14664–14669

    Article  PubMed  CAS  Google Scholar 

  • Das R et al (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7(4):291–294

    Article  PubMed  CAS  Google Scholar 

  • Dowell RD, Eddy SR (2006) Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7:400

    Article  PubMed  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929

    Article  PubMed  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  PubMed  CAS  Google Scholar 

  • Fera D et al (2004) RAG: RNA-As-Graphs web resource. BMC Bioinformatics 5:88

    Article  PubMed  Google Scholar 

  • Flores SC, Altman RB (2010) Turning limited experimental information into 3D models of RNA. RNA 16(9):1769–1778

    Article  PubMed  CAS  Google Scholar 

  • Forman JJ et al (2005) SpectralNET–an application for spectral graph analysis and visualization. BMC Bioinformatics 6:260

    Article  PubMed  Google Scholar 

  • Fulle S, Gohlke H (2008) Analyzing the flexibility of RNA structures by constraint counting. Biophys J 94(11):4202–4219

    Article  PubMed  CAS  Google Scholar 

  • Fulle S, Gohlke H (2009) Constraint counting on RNA structures: linking flexibility and function. Methods 49(2):181–188

    Article  PubMed  CAS  Google Scholar 

  • Gan HH et al (2004) RAG: RNA-As-Graphs database—concepts, analysis, and features. Bioinformatics 20(8):1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Gan HH et al (2003) Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nucleic Acids Res 31(11):2926–2943

    Article  PubMed  CAS  Google Scholar 

  • Gevertz J et al (2005) In vitro RNA random pools are not structurally diverse: a computational analysis. RNA 11(6):853–863

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H et al (2008) Proteomics, networks and connectivity indices. Proteomics 8(4):750–778

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H et al (2007) Medicinal chemistry and bioinformatics–current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus KC et al (2005) Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436(7052):861–865

    Article  PubMed  CAS  Google Scholar 

  • Hamada M et al (2006) Mining frequent stem patterns from unaligned RNA sequences. Bioinformatics 22(20):2480–2487

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952

    Article  PubMed  CAS  Google Scholar 

  • Harmanci AO et al (2011) TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences. BMC Bioinformatics 12:108

    Article  PubMed  CAS  Google Scholar 

  • Haynes T et al (2006) A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC Bioinformatics 7:108

    Article  PubMed  Google Scholar 

  • Hendrix DK et al (2005) RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys 38(3):221–243

    Article  PubMed  CAS  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Hotz RL (2011) Decoding our chatter. Wall Street J: C1–C2.

    Google Scholar 

  • Hower V, Heitsch CE (2011) Parametric analysis of RNA branching configurations. Bull Math Biol 73(4):754–776

    Article  PubMed  CAS  Google Scholar 

  • Izzo JA et al (2011) RAG: an update to the RNA-As-Graphs resource. BMC Bioinformatics 12:219

    Article  PubMed  CAS  Google Scholar 

  • Johnson M (1993) Structure-activity maps for visualizing the graph variables arising in drug design. J Biopharm Stat 3(2):203–236

    Article  PubMed  CAS  Google Scholar 

  • Jonikas MA et al (2009a) Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models. Bioinformatics 25(24):3259–3266

    Article  PubMed  CAS  Google Scholar 

  • Jonikas MA et al (2009b) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2):189–199

    Article  PubMed  CAS  Google Scholar 

  • Jossinet F et al (2010) Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26(16):2057–2059

    Article  PubMed  CAS  Google Scholar 

  • Kalir S, Alon U (2004) Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117(6):713–720

    Article  PubMed  CAS  Google Scholar 

  • Karklin Y et al. (2005) Classification of non-coding RNA using graph representations of secondary structure. Pac Symp Biocomput 4–15.

    Google Scholar 

  • Kim N et al (2007a) A computational proposal for designing structured RNA pools for in vitro selection of RNAs. RNA 13(4):478–492

    Article  PubMed  CAS  Google Scholar 

  • Kim N et al (2010) Computational generation and screening of RNA motifs in large nucleotide sequence pools. Nucleic Acids Res 38(13):e139

    Article  PubMed  Google Scholar 

  • Kim N et al (2004) Candidates for novel RNA topologies. J Mol Biol 341(5):1129–1144

    Article  PubMed  CAS  Google Scholar 

  • Kim N et al (2007b) RAGPOOLS: RNA-As-Graph-Pools—a web server for assisting the design of structured RNA pools for in vitro selection. Bioinformatics 23(21):2959–2960

    Article  PubMed  CAS  Google Scholar 

  • Knight R et al (2005) Abundance of correctly folded RNA motifs in sequence space, calculated on computational grids. Nucleic Acids Res 33(18):5924–5935

    Article  PubMed  CAS  Google Scholar 

  • Koessler DR et al. (2010) A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinformatics 11(Suppl 6): S21.

    Google Scholar 

  • Laing C, Schlick T (2010) Computational approaches to 3D modeling of RNA. J Phys Condens Matter 22(28):283101

    Article  PubMed  Google Scholar 

  • Laing C, Schlick T (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 21(3):306–318

    Article  PubMed  CAS  Google Scholar 

  • Laserson U et al (2005) Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs. Nucleic Acids Res 33(18):6057–6069

    Article  PubMed  CAS  Google Scholar 

  • Le S et al (1989) Tree Graphs of RNA Secondary Structures and Their Comparisons. Comput Biomed Res 22:461–471

    Article  PubMed  CAS  Google Scholar 

  • Lee DS et al (2008) The implications of human metabolic network topology for disease ­comorbidity. Proc Natl Acad Sci USA 105(29):9880–9885

    Article  PubMed  CAS  Google Scholar 

  • Lee JH et al (2005) A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA 102(52):18902–18907

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB et al (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16(3):279–287

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Westhof E (2002) The annotation of RNA motifs. Comp Funct Genomics 3(6):518–524

    Article  PubMed  CAS  Google Scholar 

  • Liang X et al (2006) Monitoring single-stranded DNA secondary structure formation by determining the topological state of DNA catenanes. Biophys J 90(8):2877–2889

    Article  PubMed  CAS  Google Scholar 

  • Luo X et al (2010) Computational approaches toward the design of pools for the in vitro selection of complex aptamers. RNA 16(11):2252–2262

    Article  PubMed  CAS  Google Scholar 

  • Mäcke TJ et al (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29(22):4724–4735

    Article  PubMed  CAS  Google Scholar 

  • Mandado M et al (2007) Chemical graph theory and n-center electron delocalization indices: a study on polycyclic aromatic hydrocarbons. J Comput Chem 28(10):1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Martinez HM et al (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25(6):669–683

    Article  PubMed  CAS  Google Scholar 

  • Matsuda D, Dreher TW (2004) The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321(1):36–46

    Article  PubMed  CAS  Google Scholar 

  • Milo R et al (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–1542

    Article  PubMed  CAS  Google Scholar 

  • Moses I (2012). Completeness L.A. Theater Works.

    Google Scholar 

  • Ng KL, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23(11):1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Nudler E (2006) Flipping riboswitches. Cell 126(1):19–22

    Article  PubMed  CAS  Google Scholar 

  • Nussinov R, Jacobson AB (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc Natl Acad Sci USA 77(11):6309–6313

    Article  PubMed  CAS  Google Scholar 

  • Paige JS et al (2011) RNA mimics of green fluorescent protein. Science 333(6042):642–646

    Article  PubMed  CAS  Google Scholar 

  • Parisien M, Major F (2008) The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183):51–55

    Article  PubMed  CAS  Google Scholar 

  • Pasquali S et al (2005) Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs. Nucleic Acids Res 33(4):1384–1398

    Article  PubMed  CAS  Google Scholar 

  • Petrov AI et al. (2011) WebFR3D--a server for finding, aligning and analyzing recurrent RNA 3D motifs. Nucleic Acids Res 39(Web Server issue): W50–55.

    Google Scholar 

  • Pogany J et al (2003) A replication silencer element in a plus-strand RNA virus. EMBO J 22(20):5602–5611

    Article  PubMed  CAS  Google Scholar 

  • Quarta G et al (2009) Analysis of riboswitch structure and function by an energy landscape framework. J Mol Biol 393(4):993–1003

    Article  PubMed  CAS  Google Scholar 

  • Que-Gewirth NS, Sullenger BA (2007) Gene therapy progress and prospects: RNA aptamers. Gene Ther 14(4):283–291

    Article  PubMed  CAS  Google Scholar 

  • Rivas E, Eddy SR (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol 285(5):2053–2068

    Article  PubMed  CAS  Google Scholar 

  • Rodland EA (2006) Pseudoknots in RNA secondary structures: representation, enumeration, and prevalence. J Comput Biol 13(6):1197–1213

    Article  PubMed  CAS  Google Scholar 

  • Salehi-Ashtiani K et al (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313(5794):1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Schudoma C et al (2010a) Sequence-structure relationships in RNA loops: establishing the basis for loop homology modeling. Nucleic Acids Res 38(3):970–980

    Article  PubMed  CAS  Google Scholar 

  • Schudoma C et al (2010b) Modeling RNA loops using sequence homology and geometric constraints. Bioinformatics 26(13):1671–1672

    Article  PubMed  CAS  Google Scholar 

  • Shapiro B, Zhang K (1990) Comparing multiple RNA secondary structures using tree comparisons. Comput Appl Biosci 6(5):309–318

    PubMed  CAS  Google Scholar 

  • Shapiro BA et al (2008) Protocols for the in silico design of RNA nanostructures. Methods Mol Biol 474:93–115

    Article  PubMed  CAS  Google Scholar 

  • Sharma S et al (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24(17):1951–1952

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (2009) The centrality of RNA. Cell 136(4):577–580

    Article  PubMed  CAS  Google Scholar 

  • Shu W et al (2008) A novel representation of RNA secondary structure based on element-contact graphs. BMC Bioinformatics 9:188

    Article  PubMed  Google Scholar 

  • Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci USA 96(7):3584–3589

    Article  PubMed  CAS  Google Scholar 

  • Soukup GA, Breaker RR (2000) Allosteric nucleic acid catalysts. Curr Opin Struct Biol 10(3):318–325

    Article  PubMed  CAS  Google Scholar 

  • St-Onge K et al (2007) Modeling RNA tertiary structure motifs by graph-grammars. Nucleic Acids Res 35(5):1726–1736

    Article  PubMed  CAS  Google Scholar 

  • Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418(6894):252–258

    Article  PubMed  CAS  Google Scholar 

  • Tinoco I Jr et al (1971) Estimation of secondary structure in ribonucleic acids. Nature 230(5293):362–367

    Article  PubMed  CAS  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  PubMed  CAS  Google Scholar 

  • Waterman MS (1978) Secondary Structure of Single-Stranded Nucleic Acids. Adv Mathematics Suppl Stud 1:167–212

    Google Scholar 

  • Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20(3):295–304

    Article  PubMed  CAS  Google Scholar 

  • Williams KP (2002) The tmRNA Website: invasion by an intron. Nucleic Acids Res 30(1):179–182

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  PubMed  CAS  Google Scholar 

  • Xia Z et al (2010) Coarse-grained model for simulation of RNA three-dimensional structures. J Phys Chem B 114(42):13497–13506

    Article  PubMed  CAS  Google Scholar 

  • Xin Y et al (2008) Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA 14(12):2465–2477

    Article  PubMed  CAS  Google Scholar 

  • Yook SH et al (2002) Modeling the Internet’s large-scale topology. Proc Natl Acad Sci USA 99(21):13382–13386

    Article  PubMed  CAS  Google Scholar 

  • Zadeh JN et al (2011) NUPACK: Analysis and design of nucleic acid systems. J Comput Chem 32(1):170–173

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation (DMS-0201160, CCF-0727001) and the National Institutes of Health (GM081410, GM100469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Schlick .

Editor information

Editors and Affiliations

Glossary of Graph Theory Terminologies

Adjacency

The position of two vertices connected by an edge.

Adjacency Matrix

A square matrix that represents connectivity of a graph.

Directed Graph

A graph that depicts direction by its edges.

Domination Number

A graphical invariant that is sensitive to minor changes of the structure of a tree graph

Edge

A line that connects vertices. It can also be a loop.

Gaussian Radial Basis Function

In a neural network, the weight of the input G is a Gauss function G(r)  =  exp {−r 2/2}.

Graph

A mathematical structure that models relationships and consists of vertices and edges.

Graph Invariant

A property of a graph that depends on the isomorphism.

Graph Merge

A binary operation in which two graphs G1 and G2 are merged to form a new graph Guv, where vertex u in G1 and vertex v in G2 are identified together.

Isomorphic Graphs

When two graphs have corresponding vertices.

Junction

A point of connection between three or more edges.

Kernel Function

A weighting function applied to nonparametric function estimation.

Knot-component

A representation of the general secondary structure of pseudoknots in an elementary building block (similar to Nussinov linked-graph).

Laplacian Eigenvalues

Values calculated from the Laplacian matrix. The second smallest Laplacian eigenvalues is also known as the Fiedler value, as specifies the degree of compactness.

Multilayer Perception Network

A predictive model inspired by the action of biological neurons. The multilayer perception network contains an output, an input, and a hidden layer.

Planar Dual Graph

A 2D depiction of RNA where a vertex, hairpin loops, internal loops, and junctions show the stem is shown as loop edge.

Planar Tree Graph

A 2D depiction of RNA, where bulges, internal loops, hairpin, loops, junctions, and 3´ and 5´ ends are shown as vertices, connected by edges which represent stems.

Rooted Plane Tree Graph

A tree that has a specified root vertex, where subtree graphs of any given vertex is ordered.

Support Vector Machine

A classification model that constructs an N-dimensional hyperplane that separates data into two categories

Vertex

Represented by a node or a dot. The number of vertices is the order of the graph.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, N., Fuhr, K.N., Schlick, T. (2013). Graph Applications to RNA Structure and Function. In: Russell, R. (eds) Biophysics of RNA Folding. Biophysics for the Life Sciences, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4954-6_3

Download citation

Publish with us

Policies and ethics